Higgs 2021, 18th-22th Oct. 2021

New Higgs results from ATLAS

(wrt previous edition of this conference)

O(40) results (either completely new, or published version, etc.)

→Could not be exhaustive on all results:
-a bit of arbitrary on choice items shown
-missing items are in appendice (topic covered in wildcard talk not discussed here)

Details in dedicated talks in the conference by experts on the topics

Marc Escalier, IJCLab Orsay/France, on behalf of ATLAS Collaboration

Generalities

(flashed slide)

STXS stage 1.2

(flashed slide)

(energy variable units : [GeV])

ATLAS-CONF-2021-014 March 2021

- bad resolution (MET) Large BR 🙂
- Signature

e, μ (suppr. DY), MET (suppr. DY) close leptons (spin correlations)

Categories

#jet, ggH/VBF, kinematics: mirroring STXS

Background WW, top, etc. Varies a lot w/ categ Data-driven

- Prod. modes $\begin{array}{l} \mu_{ggH} \!\!=\!\! 1.20 \stackrel{+0.16}{0.15} \\ \mu_{VBF} \!\!=\!\! 0.99 \stackrel{+0.24}{0.20} \end{array}$ Dominated by syst.
- **STXS 1.2**

ggH-0j, $p_{_{T}}^{_{H}} < 200$ GeV

ggH-1j, p_H < 60 GeV

ggH-2j, p_-H < 200 GeV

ggH, *p*^{*H*} ≥ 200 GeV

ggH-1j, $60 \le p_{-}^{H} < 120$ GeV

ggH-1j, 120 $\leq p_{_{T}}^{_{H}} < 200 \text{ GeV}$

EW qqH-2j, $350 \le m_{ii} < 700$ GeV, $p_{T}^{H} < 200$ GeV

EW qqH-2j, 700 $\leq m_{ii} < 1000 \text{ GeV}$, $p_{-}^{H} < 200 \text{ GeV}$

EW qqH-2j, 1000 $\leq m_{u}$ < 1500 GeV, p^{H} < 200 GeV

EW qqH-2j, $m_{ii} \ge 1500$ GeV, $p_{-}^{H} < 200$ GeV

EW qqH-2j, $m_{ii} \ge 350 \text{ GeV}$, $p_{-}^{H} \ge 200 \text{ GeV}$

+0.37

-0.34

0.96

З

2

0

1.13 ^{+0.47}_{-0.41}

+0.34+0.14

5

+0.43 +0.18

-0.13

6

ggH+2 j, probe mix {0⁺⁺ (SM), 0⁻⁺} • VBF, probe HVV=f(polarisation)

Results consistent w/ SM CERN-EP-2021-096 (36.1 fb⁻¹)

EPJC Sept. 2021

1st analysis on topic

± 0.08

± 0.09

 σ / σ_{SM}

$H \rightarrow \gamma^* \gamma \rightarrow 11\gamma, \text{ low } m_{11} \xrightarrow{\text{PLB 819, 136412 (2021)}}_{\text{March-May 2021}}$

• Complementary to $H \rightarrow Z\gamma$ ($m_{ll} \approx m_Z$) $Z_{obs}=2.2 \sigma (Z_{exp}=1.2 \sigma) PLB 809, 135754 (2020)$

> m_{II} <30 GeV (suppr. Z) Dalitz dominated m_{II} : exclude $m_{J/\psi}$, $m_{Y(nS)}$

(θ~m/p_T)⇔e: often 1 cluster EM
 →dedicated trigger/id

 \geq 2 leptons (e, μ), OS same flav. [resolved] or

=1 merged-ee (2 tracks) [merged] Validated w/ low-R conv. γ

- Background : llγ
 Parametrised/directly fit data
 H→γγ w/ conversion (ee category) same shape as signal
- Categories

(process, resolved/merged, lepton flavour)

• Final DV (Discriminative Variable)

VH, H→bb

Data

80 100 120 140 160 180 200

m_{bb} [GeV]

Diboson

VH, H $\rightarrow b\overline{b}$ (µ=1.17)

B-only uncertainty

B-subtracted

Events / 10 GeV (Weighted,

40⊢ 'atla's

35⊢

20

15E 0

> 40 60

vs = 13 TeV, 139 fb

2+3 jets, 2 b-tags

Dijet mass analysis Weighted by Higgs S/B

0+1+2 leptons

EPJC 81. 178 (2021)

VH, $H \rightarrow b\overline{b}$ $\sqrt{s}=13$ TeV, 139 fb⁻¹

+0.27

-0.25

0.95

 $L^{+0.18}$ Z_{obs}=6.7 ^{1.02} ^{+0.18} _{-0.17}

0 0.5 1 1.5 2 2.5 3 3.5

Tot. (Stat., Syst.)

(+0.18 , +0.19 -0.18 , -0.18

July 2020-Feb. 202

ATLAS

WH

ΖH

Comb.

Total

-Stat.

highest BR, but high bkg V(vv/lv/ll): suppr. multijets

Resolved

- b-jet correction: $\sigma \downarrow 20-40$ % Final DV: BDT
- Categories: #l, #jets, p_T^V
- Validation: $m_{bb} + VZ$
- **Boosted** topology ≥ 1 J=jj (2 track-jets) $p_T^{V,t} \ge 250 \text{ GeV}$, including $p_T^{V,t} \ge 400 \text{ GeV}$

VBF and boosted all prod., $H \rightarrow bb$

 Jet mass [GeV]

p^H_T [GeV]

w/H \rightarrow bb very high p_T and no particular production mode

2^{nd} quark generation V(vv/lv/ll)H(cc)

• c-tagging: MVA eff(c)=27 % eff(b)=8 % eff(j)=1.6 %

- Categories #leptons, #jets, #c, p_T^V
- Final DV

$$\mu_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^2}{1 + B_{H \to c\bar{c}}^{\text{SM}}(\kappa_c^2 - 1)}$$

• Limit µ obs: 26xSM exp: 31xSM

• Validation (different selection) VZ(cc), VW(cq) $Z_{obs}=2.6, Z_{obs}=3.8$ $(Z_{exp}=2.6, Z_{exp}=4.6)$

9

ATLAS-CONF-2021-044 July 2021

• 3rd generation Yukawa coupling to leptons

Signature
 MET (τ decay)
 ≥1 jet (suppr. bkg + categ)

• Background $Z(\tau\tau)+j$, top, etc.

Categorization
 Mirror STXS: f(p_T(H), #jets)

Syst. dominated by th. signal modelisation¹⁰

(flashed slide)

- Restricting to $H_{125}H_{125}$ (aa not reviewed in this category)
- Formally, HH may be classified as

pp→ $H_{125}H_{125}$ for non-resonant → prefer a specific thematic HH

or

 $pp \rightarrow BSM \rightarrow H_{125}H_{125}$ for resonant

11

Individual channels Full Run 2 (+partial comb.)

$pp \rightarrow H_{125} \rightarrow BSM$

$pp \rightarrow BSM_{\neq H} \rightarrow H$

pp→BSM H

Analyses below are moved to backup in order to respect time constraints (20') : (but described in detailed talks) :

H→aa NMSSM, $Z(ll)H(\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a(bb) \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0})$ H→ZX→4l, H→XX→4l, X={J=0: s, A, J=1: Z_d} H→Z(ll)a, $Z(ll)\eta_{c}$, $Z(ll)J/\psi$ A→Z(ll)H, H→bb, H→WW Doubly charged H^{±±}

H_{125} \rightarrow inv and dark matter $\frac{\text{ATLAS-CONF-2021-029}}{\text{July 2021}}$

• H_{125} mediator Z(ll)H($\chi\chi$), DM(χ), scalar/Majorana fermion

Dark matter/Mono-H, $H_{125} \rightarrow \gamma \gamma \xrightarrow{\text{JHEP 10, 13 (2021)}}$

DM: Dirac fermion

$V \rightarrow VH, HVT, J=1$

High mass X: $X \rightarrow \gamma\gamma$, $X \rightarrow ZZ \rightarrow IIII$, IIvv

J=0: NWA (ggH, VBF): 200-2000 GeV +LWA (ggH): Γ/m_H=0.01-0.15 (400-2000 GeV)

+Exclusion limits contour 2HDM (I, II)

Singly charged Higgs H^{\pm}

Conclusion

- Significant progress since Higgs 2020, \approx 40 results. Could not cover all of them.
- Evidence $H \rightarrow \gamma^* \gamma \rightarrow 11\gamma$, STXS added for a few channels
- VH, H \rightarrow bb combination resolved/boosted, inclusive very high p_T^H
- HH: full Run 2 for some channels since Higgs 2020
- BSM searches
- Follow wildcard talk and detailed talks on ATLAS analyses from experts on the topics

A: Wildcard [A] A: ATLAS results A+C: ATLAS+CMS results

Single Higgs (H/'1-H') A+C: SM Higgs-boson properties: mass, width, CP A: H→bb A: **Η→**ττ A: H+top A+C: Higgs $d\sigma/dX$, σ_{fid} , σ_{tot} A+C: Higgs couplings, STXS measurements A: STXS, $d\sigma/dX$, $\sigma_{fid} H \rightarrow WW$ A: STXS, $d\sigma/dX$, $\sigma_{fid} H \rightarrow \gamma \gamma$ A: STXS, $d\sigma/dX$, σ_{fid} H \rightarrow 41 A+C: Quark Yukawa interactions A+C: Yukawa leptons A: CP Higgs A: EFT A+C: **EFT Higgs** A+C: EFT results from Higgs and beyond A+C: Exotic/invisible decays Higgs

Double Higgs (HH)
A: HH
A: HH full Run 2
A: HH→bbττ

pp→BSM_{≠H}→H, pp→BSM H A: Low/high-mass resonances A: Searches additional Higgs A+C: additional scalar A: Exotics/rare Higgs decays

Prospects A+C: Modelling S, B: needs A+C: Higgs Run 3, Run 4 and beyond

References

H₁₂₅

diboson

- $H \rightarrow WW^* \rightarrow e\nu\mu\nu$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-014, released March 2021, published May 2021
- H→WW+jj, CP, polarisation, Run 2, √s=13 TeV, L=36.1 fb⁻¹, CERN-EP-2021-096, submitted EPJC Sept. 2021
- $H \rightarrow ll\gamma$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, PLB 819, 136412 (2021), submitted March 2021, published May 2021

difermions

- VH H \rightarrow bb, Run 2, \sqrt{s} =13 TeV, L=126 fb⁻¹, EPJC 81, 178 (2021), submitted July 2020, published Feb. 2021
- VH H→bb, boosted, Run 2, √s=13 TeV, L=139 fb⁻¹, PLB 816, 136204 (2021), submitted Aug. 2020, published May 2021
- VH H \rightarrow bb combination, Run 2, \sqrt{s} =13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-051, released Sept. 2021
- VBF H→bb, Run 2, √s=13 TeV, L=126 fb⁻¹, EPJC 81, 537 (2021), submitted: Nov. 2020, published June 2021
- VBF H \rightarrow bb + γ , Run 2, \sqrt{s} =13 TeV, L=132 fb⁻¹, JHEP 03, 268 (2021), submitted October 2020, published March 2021
- Inclusive H \rightarrow bb, extremal p_T, Run 2, $\sqrt{s}=13$ TeV, L=136 fb⁻¹, ATLAS-CONF-2021-010, submitted March 2021
- $H \rightarrow cc$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-021, released June 2021
- $H \rightarrow \tau \tau$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-044, released July 2021
- $H \rightarrow \mu \mu$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, PLB 812, 135980 (2021), submitted July 2020, published Dec. 2020

References

$H_{125}H_{125}$

- Resonant H(bb)H(bb), Run 2, $\sqrt{s}=13$ TeV, L ≤ 139 fb⁻¹, ATLAS-CONF-2021-035, released July 2021
- Non resonant, Resonant H(bb)H($\tau\tau$), Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-030, released July 2021
- Resonant H(bb)H($\tau_{had}\tau_{had}$) boost, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, JHEP 11, 163 (2020), submitted July 2020, published Nov. 2020
- Resonant H(bb)H($\gamma\gamma$), Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-016, released March 2021
- HH summary, Run 2, √s=13 TeV, L=27.5-139 fb⁻¹, ATL-PHYS-PUB-2021-031, released July 2021

$pp \rightarrow H_{125} \rightarrow BSM$

- $H \rightarrow Z(ll)a, Z(ll)\eta_c, Z(ll)J/\psi$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, PRL 125, 221802 (2020), submitted Apr., published Nov. 2020
- $H \rightarrow aa \rightarrow bb\mu\mu$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, CERN-EP-2021-157, submitted Oct. 2021 to PRD
- H→aa→bbbb, Run 2, √s=13 TeV, L=36 fb⁻¹, PRD 102, 112006 (2020), submitted May 2020, published Dec. 2020
- $Z(ll)H \rightarrow inv, 2HDM + a, Run 2, \sqrt{s}=13 \text{ TeV}, L=139 \text{ fb}^{-1}, ATLAS-CONF-2021-029, released July 2021}$
- Dark matter combination, Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-036, released July 2021
- NMSSM, $Z(ll)H(\tilde{\chi}_2^0\tilde{\chi}_1^0 \rightarrow a \tilde{\chi}_1^0\tilde{\chi}_1^0)$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, CERN-EP-2021-098, submitted Sept. 2021 to JHEP
- $H \rightarrow XX \rightarrow 41, H \rightarrow ZX \rightarrow 41, Run 2, \sqrt{s}=13 \text{ TeV}, L=139 \text{ fb}^{-1}, ATLAS-CONF-2021-034, released August 2021}$
- $H \rightarrow WW$, Run 2, $\sqrt{s}=13$ TeV, L=36.1 fb⁻¹, CERN-EP-2021-096, submitted Sept. 2021 to EPJC

References

$pp \rightarrow BSM_{\neq H} \rightarrow H$, and $pp \rightarrow BSM H$

- Mono-H, $H \rightarrow \gamma \gamma$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, JHEP 10, 13 (2021), submitted Avril 2021, published Oct. 2021
- $V' \rightarrow VH$, qqbb, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, PRD 102, 112008 (2020), submitted Jul. 2020, published. Dec. 2020
- W' \rightarrow WH, Run 2, \sqrt{s} =13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-026, released June 2021
- $Z' \rightarrow H(bb) + \gamma$, Run 2, $\sqrt{s} = 13$ TeV, L=139 fb⁻¹, PRL 125, 251802 (2020), submitted Aug. 2020, published Dec. 2020)
- $X \rightarrow \gamma \gamma$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, PLB, 822, 136651 (2021), submitted Mar., published Nov. 2021
- $X \rightarrow ZZ \rightarrow IIII, II_{VV}$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, EPJC 81, 332 (2021), submitted Sept. 2020, published Apr. 2021
- $A \rightarrow Z(ll)H(bb)$, $\rightarrow Z(ll)H(WW)$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, EPJC 81, 396 (2021), submitted Nov. 2020, published May 2021
- $H^{\pm} \rightarrow cb$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-037, released Aug. 2021
- $H^{\pm} \rightarrow tb$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, JHEP 06, 145 (2021), submitted Feb., published June 2021
- $H^{\pm} \rightarrow W^{\pm} A \rightarrow W^{\pm}(e\nu)\mu\mu$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-047, released Sept. 2021
- $H^{\pm\pm}$, Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, JHEP 06, 146 (2021), submitted Jan., published June 2021
- Summary hMSSM, Run 2, √s=13 TeV, L=139 fb⁻¹, ATL-PHYS-PUB-2021-030, released July 2021
- Summary Exotics Higgs, Run 2, √s=13 TeV, L=139 fb⁻¹, ATL-PHYS-PUB-2021-008, released March 2021

Generalities

EXCAVATION

BUILDINGS

Detector working in excellent conditions

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	95.7%
SCT Silicon Strips	6.3 M	98.6%
TRT Transition Radiation Tracker	350 k	97.2%
LAr EM Calorimeter	170 k	100 %
Tile Calorimeter	5200	99.5%
Hadronic End-Cap LAr Calorimeter	5600	99.7%
Forward LAr Calorimeter	3500	99.8%
LVL1 Calo Trigger	7160	99.9%
LVL1 Muon RPC Trigger	383 k	100%
LVL1 Muon TGC Trigger	320 k	99.9%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	93.0%
RPC Barrel Muon Chambers	383 k	93.3%
TGC End-Cap Muon Chambers	320 k	98.9%
ALFA	10 k	99.9%
AFP	430 k	97.0%

HL-LHC CIVIL ENGINEERING:

DEFINITION

Generalities

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Background

Varies a lot w/ categ

WW, top, etc.

Data-driven

ATLAS-CONF-2021-014 March 2021

Uncertainty

HVB

tī/Wt

 Z/γ^*

Other VV

ATLAS Preliminary + Data

√s = 13 TeV, 139 fb⁻¹

 $700 \vdash H \rightarrow WW^* \rightarrow ev\mu v$

Preselection

900<u>×10</u>

800

600

500

400

300

200 100

Events

- Large BR 🙂 bad resolution (MET) 😕
- Signature
- e, μ (suppr. DY), MET (suppr. DY) close leptons (spin correlations)
- Categories

#jet, ggH/VBF, kinematics: mirroring STXS

- Data / Pred. 0.6 Production Particle-Level STXS Reduced Reconstructed Signal Region **STXS 1.2** Production Bins Mode Stage 1.2 Category p_T^{sublead} ≤ 20 GeV ATLAS Preliminary m_{rr} ≤ 30 GeV H Total Statistical Unc. ggH 0j, low p_{τ}^{H} n-sublead > 20 GeV n-" < 200 Ge\ N.... = 0 $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹ Systematic Unc. p," < 200 GeV iad < 20 GeV m_# > 30 GeV $H \rightarrow WW^* \rightarrow ev\mu v$ SM Prediction $p_{T}^{sublead} > 20 \text{ GeV}$ p-value = 52% Total (Stat. Syst.) SM Unc. n. ^H < 60 GeV p," < 60 GeV ggH 1j, very low p," N_{jets} = +0.16+ 0.08 +0.1460 < p." < 120 GeV ggH-0j, $p_{_{T}}^{_{H}} < 200$ GeV 1.20 ± 0.06 ggH 60 ≤ p," < 120 GeV -0.15 - 0.08 -0.13+0.59 + 0.30 +0.50120 < n." < 200 Ge ggH-1j, p_-^H < 60 GeV 0.85 ± 0.14 120 ≤ p,⁺ < 200 GeV 0.60 -0.30 ; -0.52+0.32+0.53+0.42≥2-iets ggH-1j, $60 \le p_{-}^{H} < 120$ GeV 0.73 ± 0.16 $m_{\ell\ell} \le 30 \text{ GeV}$ -0.41 -0.52- 0.32 ail Central Jet Veto N..... ≥ 2 p." < 200 GeV + 0.64 +0.81+0.49Outside Lepton Veto pr < 200 GeV ggH-1j, 120 $\leq p_{_{T}}^{_{H}} < 200 \text{ GeV}$ 1.46 m_{it} > 30 Ge\ ± 0.21 - 0.62 -0.78 -0.47p." ≥ 200 GeV + 0.41 +0.67 ggH-2j, p_-^H < 200 GeV 1.53 +0.79p," ≥ 200 GeV ± 0.21 aH. hiah p. - 0.41 -0.67 -0.79 +0.8+ 0.65 +0.49*ggH*, *p*^{*H*}_− ≥ 200 GeV 2 17 $m_{\ell\ell} \leq 30 \; {\rm GeV}$ ± 0.28 N..... 2 : -0.78 Fail Central Jet Veto - 0.63 -0.46or Outside Lepton Veto pr" ≥ 200 GeV + 0.40 +0.38 +0.55m₁₁ > 30 GeV EW qqH-2j, $350 \le m_{\mu} < 700 \text{ GeV}$, $p_{-}^{H} < 200 \text{ GeV}$ -0.20 ± 0.13 -0.56 0.35 -0.4350 ≤ m_i < 700 GeV +0.49+0.32+0.59EW ggH, low m,-low p, 350 ≤ m_g < 700 GeV EW qqH-2j, 700 $\leq m_{ii} < 1000 \text{ GeV}$, $p_{-}^{H} < 200 \text{ GeV}$ 0.50 ± 0.11 -0.53 -0.44-0.30700 ≤ m, < 1000 GeV +0.45700 ≤ m_s < 1000 GeV +0.51+0.25EW qqH-2j, 1000 $\leq m_{u}$ < 1500 GeV, p^{H} < 200 GeV 1.07 pr^H < 200 GeV ± 0.10 -0.41 , -0.23 -0.47N_{iets} ≥ 2 p₁^N < 200 GeV 1000 ≤ m. < 1500 GeV +0.37+0.34+0.14EW ggH 1000 ≤ m_i < 1500 GeV EW qqH-2j, $m_{\mu} \ge 1500 \text{ GeV}$, $p^{H} < 200 \text{ GeV}$ 0.96 ± 0.08 0.34 -0.13n. ≥ 1500 Ge m_s ≥ 1500 GeV Pass Central Jet Veto +0.47+0.43 +0.18 EW qqH-2j, $m_{ii} \ge 350 \text{ GeV}$, $p_{-}^{H} \ge 200 \text{ GeV}$ 1.13 ± 0.09 - 0.38 and Outside Lepton Veto -0.41 -0.15 p,[#] ≥ 200 GeV p." ≥ 200 GeV m, ≥ 350 GeV m_s ≥ 350 GeV 5 6 σ / σ_{SM}
- ggH+2 j, probe mix {0⁺⁺ (SM), 0⁻⁺} VBF, probe HVV=f(polarisation) Results consistent w/ SM CERN-EP-2021-096 (36.1 fb⁻¹) 1st analysis on topic EPJC Sept. 2021

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-014

• Selection

=2 l, (e, μ) (suppr. DY), OS, $p_T>22$, 15 GeV m_{ll}>10 GeV (suppr. DY $\rightarrow \tau\tau$, & low mass resonances) MET cut (suppr. DY)

Veto events w/ b-jet p_T>20 GeV (suppr. top) Close leptons (spin correlations)

Cut=f(topology) (suppr. WW, top, DY)

Categories: #jet, ggH/VBF, mirroring STXS

Bkg=f(category); data-driven

- Final DV : m_T(ll) [ggH], DNN [VBF] Simultaneous fit SR+CR
- Prod. modes

• STXS stage 1.2

• Selection

=2 l, (e, μ) (suppr. DY), OS, p_T>22, 15 GeV

 $m_{ll}>10 \text{ GeV} (\text{suppr. DY} \rightarrow \tau\tau, \& \text{ low mass resonances})$ MET cut

Veto events w/ b-jet p_T >20 GeV (suppr. top) Close leptons (spin correlations)

Cut=f(topology)

N

• Final DV : m_T(ll) [ggH], DNN [VBF] Simultaneous fit SR+CR

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-014

• Prod. modes

 $\begin{array}{l} \mu_{ggH} \!\!=\!\! 1.20 \stackrel{+0.16}{0.15} \\ \mu_{VBF} \!\!=\!\! 0.99 \stackrel{+0.24}{0.20} \end{array}$

Dominated by syst.

m_H=125.09 GeV

• STXS stage 1.2

ATLAS, Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-014

 $H \rightarrow W(ev)W(\mu v) + jj$, CP, polarisation

• Higgs: scenario mixture: $\tan \alpha : \min \{0^{++} (SM), 0^{-+}\}$ • Coupling HVV=f(polarisation) assume std HVV Assume pure CP-even H (V_T, V_L)

Run 2, $\sqrt{s}=13$ TeV, L=36.1 fb⁻¹, CERN-EP-2021-096

First analysis on this topic

 $H \rightarrow W(ev)W(\mu v) + jj$, CP, polarisation

 $\mathcal{L}_{0}^{\text{loop}} = -\frac{g_{Hgg}}{4} \left(\kappa_{gg} \cos(\alpha) G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{gg} \sin(\alpha) G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$ SM CP-even CP-odd

Run 2,
$$\sqrt{s}=13$$
 TeV, L=36.1 fb⁻¹, CERN-EP-2021-096

• Selection

=2 OS \neq flavour leptons, m_{ll}>10 GeV Veto events/ b-jet (suppr. top) m_{$\tau\tau$}<66 GeV (suppr. Z($\tau\tau$)) BDT

```
+topology (ggH/VBF)
Bkg data-driven
```


$H \rightarrow W(ev)W(\mu v) + jj$, CP, polarisation

Higgs: scenario mixture $\tan \alpha : \min \{0^{++} (SM), 0^{-+}\}$ assume std HVV $\Delta \Phi_{ii}$ ggH a Q000Q 2000Q a Event fraction ATLAS Simulation $\sqrt{s} = 13 \text{ TeV}, \text{ ggF H} \rightarrow WW^* \rightarrow ev\mu v$ - CP even --- CP odd --- CP mixed $|\Delta \eta_{\rm ii}| > 3.0$ 0. 0.05 2 $\tan \alpha = 0.0 \pm 0.4 \text{ (stat)} \pm 0.3 \text{ (sys)}$

Coupling HVV=f(polarisation) Assume pure CP-even H (V_T, V_I)

Run 2, $\sqrt{s}=13$ TeV, L=36.1 fb⁻¹, CERN-EP-2021-096

First analysis on this topic

$H \rightarrow \gamma^* \gamma \rightarrow 11\gamma$, low m_{11}

m_{ll}<30 GeV Dalitz dominated (FSR negligible)

- Background : lly
- Selection

 $\geq 1 \gamma, p_T > 0.3 m_{ll\gamma} \\ \geq 2 1 (e, \mu), OS \text{ same flav., or } =1 \text{ merged-ee } (\theta \sim m/p_T) \\ p_T = f(\text{flavour, resolved/merged}) \\ p_T(ee) > 0.3 m_{ll\gamma} \\ m_{ll} < 30 \text{ GeV } (\text{suppr. } Z) \\ \text{Veto few ll resonances } (\text{suppr. } J/\psi, \text{ suppr. } Y(nS)) \\ m_{ll\gamma} \in [110; 160] \text{ GeV}$

Categories (event topology, lepton flavour)

$H \rightarrow \gamma^* \gamma \rightarrow 11\gamma$, low m_{11}

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, Phys. Lett. B 819, 136412 (2021)

$H(\gamma\gamma)$: couplings

STXS

Selection

2 photons tight isolated Categorisation⇔STXS

- Background $\gamma\gamma$, γ],]] Direct fit on data (ABCD for estimating composition)
 - Final DV: $m_{\gamma\gamma}$
 - μ: 1.09 +/- 0.10
 - μ

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2020-026

 $|y_{\rm H}| < 2.5$

No significative discrepency wrt SM

$H(\gamma\gamma)$: couplings

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2020-026

 $|y_{\rm H}| < 2.5$

p_{Tt}

 p_{Tγγ} category used historically for fermiophobic analysis drawback : turn-on effect on invariant mass

• new variable : p_{Tt} : transverse projection of $p_{T\gamma\gamma}$ on thrust axis

Advantages

discriminant against bkg p_{Tt} higher for VBF, VH, ttH $1/N \text{ dN/dp}_{T_t}$ / 10 GeV VBF+VH 10⁻ γγ+γj+jj, MC ata, sidebands Entries / 0.01 GeV 10-2 10⁻³ 10 ATLAS untagged Central 10⁻⁴ ∫Ldt = 20.3 fb⁻¹, √*s* = 8 TeV $H \rightarrow \gamma \gamma, m_{H} = 125 \text{ GeV}$ 10 10⁻⁵ 200 150 250 50 100 300 -0.6 -0.4 p_, [GeV]

Sensitivity gain : 5-10 % ($f(m_H)$)

• Less correlated to $m_{\gamma\gamma}$

0.2

(true - reco) / true

-0.2

• Less sensitive to resolution effects

0.6

high $p_{T\gamma\gamma} : \Delta \alpha \ll :$ similar to $p_{T\gamma\gamma}$ low $p_{T\gamma\gamma} : \Delta \alpha \gg \Leftrightarrow$ small angle {thrust ; $\gamma\gamma$ } -uncert. long.. : $\delta p_T x \cos$ (small angle) -transv. : $\delta p_T x \sin$ (small angle)

 \rightarrow low effect

VH, H→bb

m_H=125 GeV

Boosted topology ≥ 1 J=jj (2 track-jets), $p_T^{V,t} \geq 250$ GeV, including $p_T^{V,t} \geq 400$ GeV 40 $Z_{obs}=2.1$ ($Z_{exp}=2.7$), no deviation wrt SM Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, PLB 816, 136204 (2021)

VH, H→bb

Wilson coefficie	nt Operator	r	Impacted vertex		
			Production	Decay	
c_{HWB}	$\mathcal{Q}_{HWB} = H^{\dagger} \tau^{I} H$	$IW^I_{\mu u}B^{\mu u}$	HZZ		
c_{HW}	${\cal Q}_{HW}=H^{\dagger}HW$	${\cal Q}_{HW}=H^{\dagger}HW^{I}_{\mu u}W^{\mu u}_{I}$			
$c_{Hq}^{(3)}$	$\mathcal{Q}_{Hq}^{(3)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} H)$	$(ar{q}_p au^I \gamma^\mu q_r)$	qqZH, qq'WH		
$c_{Hq}^{(1)}$	$\mathcal{Q}_{Hq}^{(1)} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H$	$\mathcal{Q}_{Hq}^{(1)} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$			
c_{Hu}	$\mathcal{Q}_{Hu} = (H^{\dagger}i\overleftarrow{D_{\mu}}H$	$)(\bar{u}_p\gamma^{\mu}u_r)$	qqZH		
c_{Hd}	$\mathcal{Q}_{Hd} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H$	$)(ar{d}_p\gamma^\mu d_r)$	qqZH		
c_{dH}	$\mathcal{Q}_{dH} = (H^{\dagger}H)$	$(\bar{q}dH)$		Hbb	
	68% CL95% CL Linear (obs.) – Linea	$Vs = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ VH, H \rightarrow bb, $\Lambda = 1 \text{ TeV}$ inear + quadratic (obs.)			
-	Linear (obs.) 📒 Linea	ar + quadratic	(obs.)		
•	Best-fit (obs.)	Linear 68% CL	Linear + quadr 68% CL	ratic	
⁽³⁾ [× 10.0]		[-0.017, 0.02	29] [-0.018, 0.02	6]	
c _{Hu} [× 5.0]		[-0.081, 0.2	2] [-0.19, 0.10]	וו	
c _{HW} [× 2.0]		[-0.17, 0.2 ⁻] [-0.24, 0.18]	וו	
_{ЧWB} [× 0.5]		[-0.46, 1.3] [-0.44, 1.1]		
_{ан} [× 0.05]		[-13, 3.3]	[-10, 3.8] ∪ [29,	, 43]	
<u>u 1 1</u>	-2 0 2	4	6 8		

Run 2, $\sqrt{s}=13$ TeV, L=126 fb⁻¹, EPJC 81, 178 (2021)

41

VH, $H \rightarrow$ bb, boosted regime

$p_T^V > 250 \text{ GeV}$

Run 2, √s=13 TeV, L=139 fb⁻¹, PLB 816, 136204 (2021)

• final DV

Production modes

STXS

 $m_{\rm H}=125~{\rm GeV}$

Combination VH, $H \rightarrow bb$

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-051

 μ_i $\mu_{\rm VH} = 1.00^{+0.18}_{-0.17}, Z_{\rm obs} = 6.4 (Z_{\rm exp} = 6.3)$

 $\mu_{WH} = 1.03^{+0.28}_{-0.27}, Z_{obs} = 4.1 (Z_{exp} = 3.9)$ $\mu_{ZH} = 0.97^{+0.25}_{-0.23}, Z_{obs} = 4.6 (Z_{exp} = 5.0)$

Combination VH, $H \rightarrow bb$

• STXS 1.2

• EFT

VBF, H→bb

Very high p_T , H \rightarrow bb, all prod. modes

- $p_T^H > 450 \text{ GeV} (\text{even } p_T^H > 1 \text{ TeV bin})$
- $H \rightarrow bb$ reconstructed as single large R jet b-tagging for contained tracks

Limits 95 % CL ATLAS-CONF-2021-010

First ATLAS study w/ $H \rightarrow$ bb very high p_T and no particular production mode

$H \rightarrow bb w / VBF + photon$

Run 2, $\sqrt{s}=13$ TeV, L=132 fb⁻¹, JHEP 03, 268 (2021) October 2020

$$Z_{obs} = 1.3 (Z_{exp} = 1.0)$$

$H \rightarrow cc$

V(vv/lv/ll)H(cc)

c-tagging DL1_c, veto b (MV2) eff(c)=27 % eff(b)=8 % eff(j)=1.6 %

Selection Categories $p_T^V > 75 \text{ GeV}$ ≥ 2 jets 1 signal j w/ p_T >45 GeV signal j=highest p_T central j Veto b-jet for non-signal j (\perp VH(bb)) +CRs $\Delta R(j,j) < \text{thr for signal jets}$

± **1**σ

 $\pm 2\sigma$

80

95% C.L. limit on $\mu_{_{VH(c\overline{c})}}$

100

60

Expected

Observed

Final DV

Limit µ

-0, 1, 2-leptons -2, 3 jets -1, 2 c $-p_T^V$ (for 2-l)

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-021

K_c

limit 95 %

obs: <8.50

exp: <12.4

 $\mathcal{H}_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^2}{1 + B_{H \to c\bar{c}}^{\text{SM}}(\kappa_c^2)}$

48

Validation

VZ(cc), VW(cq)

Η→ττ

 $\tau_e\tau_\mu,\,\tau_l\tau_{had},\,\tau_{had}\tau_{had}$

• Background

Primary: Z(ττ)+j, top Secondary: Z(ll)+j, W+j Modelling : MC+data-driven

- Selection
- \geq 1 jet (suppr. bkg + categorisation) MET>20 GeV (v)

OS τ , inv. mass, angular cuts, veto b-jet, (apart ttH categ.)

• Categorization

STXS 1.2 : $f(p_T(H), #jets)$

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-044

H→μμ

m_H=125.09 GeV

• Bkg inclusive: Drell-Yan VH, ttH: VV, tt, 1-t, etc.

• Selection

 $\geq 2 \text{ OS } \mu$

BDT

Categorization (20): ttH, VH, VBF, ggH

• Results

 $Z_{obs}=2.0$ $Z_{exp}=1.7$

Uncertainty dominated by stat.

Sensitivity x 2.5 wrt 36.1 fb⁻¹ analysis: x 2 (stat), +25 % (analysis)

HH

(flashed)

- Restricting to $H_{125}H_{125}$ (as not reviewed in this category)
- Formally, HH may be classified as

 $pp \rightarrow H_{125}H_{125}$ for non-resonant \rightarrow prefer a specific thematic HH $pp \rightarrow BSM \rightarrow H_{125}H_{125}$ for res

Resonant X \rightarrow H(bb)H(bb), J=0, J=2

Resolved: $m_X \in [251; 1500]$ GeV

 $H_1 H_2 (\Sigma p_T)_1 > (\Sigma p_T)_2$

Pairing: BDT

● ● ● eff: ≥65 %

Run 2, √s=13 TeV, L≤139 fb⁻¹, ATLAS-CONF-2021-035

boosted: $m_x \in [900; 3000]$ GeV

 \geq 2 large-R jets, p_T>250 GeV $|\eta| < 2.0, m_{\rm H} > 50 \text{ GeV}, \ge 1 \text{ track jet (b)}$ $\geq 1 \text{ H w/ } p_{T} > 450 \text{ GeV}$ $|\Delta \eta_{\rm HH}| < 1.3$ (suppr. multijets) Categories #jets & b-tag status Kinematic regions SR, VR, CR (X_{HH})

$$X_{HH} = \sqrt{\left(\frac{m(H_1) - 124 \,\text{GeV}}{0.1 \times m(H_1)}\right)^2 + \left(\frac{m(H_2) - 1}{0.1 \times m(H_1)}\right)^2}$$

$$\left(\frac{\text{eV}}{\text{O}}\right)^2 + \left(\frac{m(H_2) - 115 \text{ GeV}}{0.1 \times m(H_2)}\right)$$

Final DV: corrected m_{HH}

 $|\Delta \eta_{\rm HH}| < 1.5$ (suppr. multijets)

Kinematic regions SR, VR, CR (X_{HH})

 $X_{HH} = \sqrt{\left(\frac{m(H_1) - 120 \,\text{GeV}}{0.1 \times m(H_1)}\right)^2 + \left(\frac{m(H_2) - 110 \,\text{GeV}}{0.1 \times m(H_2)}\right)^2}$

top veto ($X_{Wt} < 1.5$)

Final DV: m_{HH}

HH→bbbb

gg HH JHEP 01 (2019) 030

VBF HH

JHEP 07 (2020) 108

Non Resonant Limit (xSM)

Non Resonant Limit (xSM)

Observed	-2σ	-1σ	Expected	$+1\sigma$	+2\sigma
12.9	11.1	14.9	20.7	30.0	43.6

	Observed	-2σ	-1σ	Expected	+1 σ	+2 σ
σ _{VBF} [fb]	1460	510	690	950	1330	1780
$\sigma_{ m VBF}/\sigma_{ m VBF}^{ m SM}$	840	290	400	550	770	1030

• Limits c_{2V} at 95 % CL obs: [-0.56 ; 2.89] exp: [-0.67 ; 3.10]

Resonant (superseeded)

Non-resonant and resonant $H(bb)H(\tau\tau)$

 $\begin{array}{l} \tau_{had}\tau_{had},\,\tau_{had}\tau_{lep} \\ m_{H} {=} 125 \,\,GeV \end{array}$

• Bkg Top, Z+j, W+j, VV, 1-H, multijets Data-driven from CR, simulation

• Selection

 $\tau_{had}\tau_{had}$ =2 b-jets, p_T>45, 20 GeV, 2OS $\tau_{had-vis}$ veto additional leptons $m_{\tau\tau}^{MMC}>60$ GeV

$$\begin{split} \tau_{had} \tau_{lep} \\ =& 2 \text{ b-jets}, = 1 \text{ e or } \mu, \text{ OS } \tau_{had\text{-vis}} \\ m_{\tau\tau}^{\text{MMC}} &> 60 \text{ GeV} \\ m_{bb} &< 150 \text{ GeV (suppr. tt)} \end{split}$$

• Final DV: MVA

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-030

• Non-resonant analysis (gg, qq)

Limits $\sigma(HH \rightarrow bb\tau\tau)$ obs: 4.7xSM exp: 3.9xSM

• Resonant analysis, J=0 m_X ∈ [251 ; 1600] GeV

- Dominated by stat uncertainty ^{m_x [GeV]}
- Largest excess: $m_X=1$ TeV $Z_{loc}=3.0$ ($Z_{glob}=2.0$)

Boosted resonant $H(bb)H(\tau\tau)$

• $\tau\tau$ tagger for boosted $\tau_{had}\tau_{had}$ (1st time in ATLAS)Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, JHEP 11, 163 (2020)

$H(bb)H(\gamma\gamma)$: non-resonant, resonant

$pp \rightarrow H_{125} \rightarrow BSM$

H→aa

Pseudo-scalar a

• $H \rightarrow aa \rightarrow bb\mu\mu$, $m_a \in [16; 62]$ GeV, inclusive Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, CERN-EP-2021-157

H→aa→bbµµ

Pseudo-scalar a, $m_a \in [16; 62]$ GeV

• Selection =2 μ OS p_T=f(trigger) 15<m_{µµ}<65 GeV =2 b-jets, p_T>20 GeV

Kinematic fit+cuts: constrain m_{bb} to $m_{\mu\mu}$ MET<60 GeV (suppr. tt) Cut BDT

• Background Primary: DY, tt: CR Secondary: VV, 1-t, tt: MC

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, CERN-EP-2021-157

• Counting experiment

H→aa→bbbb

Pseudo-scalar a, $m_a \in [15; 30]$ GeV

 $(\theta \sim m/p_T)$ R=0.8 Run 2, $\sqrt{s}=13$ TeV, L=36 fb⁻¹, PRD 102, 112006 (2020)

• Selection $m_{ll} \in [85; 100] \text{ GeV}$ $m_a \approx m_a \text{ (within 25 GeV)}$ $m_{aa} \text{ compatible w/ } m_H$

Complementary to $m_a \in [20; 60]$ GeV: JHEP 10, 031 (2018)

Other BSM searches

• NMSSM, $Z(ll)H(\tilde{\chi}_2^0\tilde{\chi}_1^0 \rightarrow a(bb)\tilde{\chi}_1^0\tilde{\chi}_1^0)$ $T = C[20:65]C_0V$

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, CERN-EP-2021-098

- limit BR($H \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0$) = 31 % (95 % CL) For $m_a \in [35; 55]$ GeV, $m_{\tilde{\chi}_1^0} = 10$ GeV, $m_{\tilde{\chi}_2^0} = 80$ GeV (assuming SM ZH, BR($\tilde{\chi}_2^0 \rightarrow a \tilde{\chi}_1^0$) = 100 %, BR($a \rightarrow bb$) = 100 %) uncertainty dominated by stat
- First limit on this exotic decay from LHC

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-034

NMSSM, $Z(ll)H(\tilde{\chi}_2^0\tilde{\chi}_1^0 \rightarrow a(bb)\tilde{\chi}_1^0\tilde{\chi}_1^0)$

$$\begin{split} & Z(ll)H(\tilde{\chi}_2^0\tilde{\chi}_1^0 \rightarrow a \; \tilde{\chi}_1^0\tilde{\chi}_1^0) \\ & a \rightarrow \text{bb}, \, \text{m}_{\text{a}} \in [20 \; ; \; 65] \; \text{GeV} \end{split}$$

• Bkg: Z+HF, tt

• Selection

=2 l, OS same flavour, veto add. l $81 < m_{ll} < 101 \text{ GeV}$ $\geq 2 \text{ j } p_T > 20 \text{ GeV}, 1 \text{ b-tagged}, 20 < m_{jj} < 120 \text{ GeV}$ MET>100 GeV etc.

Run 2, √s=13 TeV, L=139 fb⁻¹, CERN-EP-2021-098

3D scan in $(m_a, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0})$

uncertainty dominated by stat example

- limit BR($H \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$) = 31 % (95 % CL) For $m_a \in [35; 55]$ GeV, $m_{\tilde{\chi}_1^0} = 10$ GeV, $m_{\tilde{\chi}_2^0} = 80$ GeV (assuming SM ZH, BR($\tilde{\chi}_2^0 \to a \tilde{\chi}_1^0$) = 100 %, BR($a \to bb$) = 100 %)
- First limit on this exotic decay from LHC ⁶⁵

$H \rightarrow ZX \rightarrow 41, H \rightarrow XX \rightarrow 41,$

$H \rightarrow Z(ll)a, Z(ll)\eta_c, Z(ll)J/\psi$

• Background Z+jets (CR ABCD)

• Limits (95 % CL) $\sigma(pp \rightarrow H)BR(H \rightarrow Z Q/a)$ Z(ll) η_c Z(ll)J/ ψ H→Z(ll)a obs: 110 pb 110 pb 17-340 pb exp: 100 pb 100 pb 16-320 pb

First direct limit of H_{125} to this decay

$H \rightarrow invisible: DM-SM coupling$

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-029 H_{125} mediator Interpretation: $\sigma_{DM-nucleon} = f(m_{WIMP})$ $Z(ll)H(\chi\chi)$, DM (χ): scalar/Majorana $B(H \rightarrow inv) < 0.15$ Events $\sigma_{\sf WIMP-nucleon}$ [cm²] 1000 ATLAS Preliminary ATLAS Preliminary √s = 13 TeV, 139 fb⁻ WZ ZZ All limits at 90% CL 10⁻⁴⁰ SR 800 Z+jets Non-res. $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 95 % limit BR($H \rightarrow inv$) Uncertainty 600 10^{-42} obs: 18 % 400 exp: 18 % 10^{-44} 200 10⁻⁴⁶ Higgs Portal Scalar WIMP Competitive in low m_{DM} ENON1T MIGD 2020 Data/Pred. Majorana WIMF DarkSide-50 2018 10^{-48} With direct measurements LUX 2017 PandaX-II 2020 KENON1T 2018 0.8 (low sensitivity w/ recoil measurements) 10^{-50} -0.20.2 10^{2} 10 10^{3} BDT m_{WIMP} [GeV]

Dark matter : ATLAS combination

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-036

MET+h(bb), MET+Z(ll), MET+h($\gamma\gamma$), H[±]→tb, H(inv), etc. Combination+interpretation in 2DHM(II)+a($\chi\chi$)

Exclusion $m_a \le 560$ GeV for $m_A = m_H = m_{H\pm} = 1.2$ TeV, $\sin \theta = 0.35$, $\tan \beta = 1.0$

pp→BSM H

Run 2, √s=13 TeV, L=139 fb⁻¹, PLB, 822, 136651 (2021)

71

$A \rightarrow Z(II)H, H \rightarrow bb, H \rightarrow WW$

$A \rightarrow Z(II)H, H \rightarrow bb, H \rightarrow WW$

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, EPJC 81, 396 (2021)

 $pp \rightarrow BSM_{\neq H} \rightarrow H$ and $pp \rightarrow BSM H$

V'→VH, qqbb

10⁻¹

1.5

2.5

3.5

4.5

m(Z') [TeV]

10⁻¹

1.5

2

2.5

3

3.5

4.5

m(W') [TeV]

5

-2 -1 0 1 2 3 Higgs and vector boson coupling g

75

$V \rightarrow VH$, qqbb ; $W \rightarrow WH$, lvbb

Run 2, √s=13 TeV, L=139 fb⁻¹, ATLAS-CONF-2021-026

• W' \rightarrow WH, lvbb

A: $g_V = 1$, B: $g_V = 3$

95 % limit σ : 1.3 pb-0.56 fb in 400-5000 GeV exclude $m_{W'}$ <2.95 TeV ; 3.15 TeV respectively for HVT model A ; B

$Z' \rightarrow H(bb) + \gamma$

- J=1, m_X=700-4000 GeV
 Collimated b-jets
 2 categories b-tagging
- Selection

 $\geq 1 \gamma p_T > 200 \text{ GeV}$, tight isolated $\geq 1 \text{ J } (R=1.0), m_J \text{ compatible } m_H$, identify 2 b-quarks

Final DV: m_{Jv} GeV 10⁵ 10^{5} e) ATLAS ATLAS √s = 13TeV, 139 fb⁻¹ √s = 13TeV, 139 fb⁻¹ Events / 40 $q\bar{q} \rightarrow Z' \rightarrow H\gamma$ $q\bar{q} \rightarrow Z' \rightarrow H\gamma$ Data Data 10^{3} single b-tagged 10° double b-tagged Events Background $\pm 1 \sigma$ Background $\pm 1 \sigma$ Signal m_ = 2 TeV Signal m_ = 2 TeV 102 10' Signal $m_{\pi}^{2} = 3 \text{ TeV}$ Signal m__ = 3 TeV 10-10 10⁻² 10⁻² Significance Significance 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000 1500 m_{Jγ} [GeV] m_{Jγ} [GeV]

 $\sigma(q\bar{q} \rightarrow Z') \times B(Z' \rightarrow H\gamma)$ [fb]

10²⊧

10

ATLAS

 $q\overline{q} \rightarrow Z' \rightarrow H\gamma$

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

(c)

m_{z'} [GeV]

Observed 95% CL

······ Expected 95% CL

Expected $\pm 1 \sigma$

Expected $\pm 2 \sigma$

1000 1500 2000 2500 3000 3500 4000

$X \rightarrow \gamma \gamma$

- J=0: NWA: 160-3000 GeV LWA: Γ: [0 ; 10 %]: 400-2800 GeV +J=2 (not covered by presentation)
- Selection

 $\geq 2 \gamma$, E_T>22 GeV, $|\eta| < 2.37$, tight, isolated $E_T/m_{\gamma\gamma}$ >0.3 GeV (leading) ; 0.25 (subleading)

Background

 $\gamma\gamma$, γj (jj) : direct fit data (+ABCD spurious signal, FD)

• $\mathbf{p}_0 = f(\mathbf{m}_{\mathbf{X}}, \Gamma_{\mathbf{X}}; \mathbf{k}/\overline{\mathbf{M}}_{Pl})$ Highest excess: J=0, NWA: 3.29 (glob. 1.30)[×] ₂[∞] J=2, NWA: 3.29 (glob. 1.36)

PLB, 822, 136651 (2021)

$X \rightarrow ZZ \rightarrow IIII, IIvv$

J=0: NWA (ggH, VBF): 200-2000 GeV Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, EPJC 81, 332 (2021) +LWA (ggH): $\Gamma/m_{\rm H}=0.01-0.15$ (400-2000 GeV) +J=2 (not covered by presentation)

۲

Exclusion contour 2HDM

- NWA tanβ tanβ $H \rightarrow ZZ \rightarrow l^+ l^- l^{\prime +} l^{\prime +} l^{\prime -}$ $H \rightarrow ZZ \rightarrow l^+ l^- l^{++} l^{+$ ATLAS ATLAS 10 95% CL limits on $\sigma_{
 m ggF} imes B(H\!
 ightarrow ZZ)$ [pb] 2HDM Type I, m = 220 GeV 2HDM Type II, m = 220 GeV ---- Observed CL_s limit --- Obs 95% CL == ±1σ band Exp 95% CL == ±2σ band Obs 95% CL = ±1 s band ATLAS √s = 13 TeV √s = 13 TeV ----- Exp 95% CL $\pm 2\sigma$ band ----- Expected CL_ limit $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 139 fb⁻¹ 139 fb⁻¹ Excluded Excluded Expected $\pm 1 \sigma$ $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^- + l^+ l^- v \overline{v}$ Expected $\pm 2 \sigma$ NWA, ggF production ----- Expected CL limit (/*/ /'/') ----- Expected CL_{i} limit $(I^{+}I^{-}v\overline{v})$ 10 10 10^{-2} 10^{-3} 1000 1500 500 2000 m_н [GeV] -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 +VBF $\cos(\beta - \alpha)$ $\cos(\beta - \alpha)$
 - +LWA: Γ/m_H=0.01-0.15

Limits

$A \rightarrow Z(ll)H, H \rightarrow bb, H \rightarrow WW$

• Selection

=2 e or 2 μ , OS (not required for electrons) m₁₁ \in [80 ; 100] GeV \geq 2 b (11bb) or \geq 4 jets (11WW)

Channel specific selection

Final DV: m_{llbb}

Α

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, EPJC 81, 396 (2021) A \rightarrow Z(ll)H, H \rightarrow WW

W→jj: jet combinatorics if bbA

Singly charged Higgs H[±]

$H^{\pm} \rightarrow cb$

• $m_{H^{\pm}} \in [60; 160] \text{ GeV}$

- Selection
- =1 e or μ , $p_T > 28 \text{ GeV}$

Data

 ≥ 2 jets, p_T ≥ 25 GeV, ≥ 2 b-tagged (DL1r, 5 OP)

NN used for fit

ATLAS Preliminary

vs = 13 TeV, 139 fb

mut = 130 GeV, 38 = 0.16%

 $H^{\pm} \rightarrow cb \ search$

Post-Fit

Events

8000

7000 4i, 3b

6000

5000 4000 3000

2000

1000

1.25

0.75

0.5^E

Data / Pred.

Categories #j (4, 5, 6), #b (3, ≥4), CR

Itt + ≥1c

non-tī

• 95 % limit BR obs: 0.15 %-0.42 % exp: 0.09 %-0.25 %

Sensitivity \uparrow x5 wrt previous analyses (CMS, $\sqrt{s}=8$ TeV)

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-037

$H^{\pm} \rightarrow W^{\pm} A \rightarrow W^{\pm} (ev) \mu \mu$

Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATLAS-CONF-2021-047

Counting experiment (cut m_{µµ} wdw)

• Limits

2HDM I, lower limit on tan β

H+→tb

600

400

800 1000 1200 1400 1600 1800 2000

m_{H⁺} [GeV]

10⁻² ⊑. 200 • Interpretation hMSSM MSSM, m_h^{125} MSSM, $m_h^{125}(\tilde{\chi})$ MSSM, $m_h^{125}(\tilde{\tau})$ MSSM, $m_h^{125}(\tilde{\tau})$ MSSM, m_h^{125} (alignement) MSSM, m_h^{125} (CPV)

Broader exclusion of phase space

84

Doubly charged H^{±±}

• Type-II seesaw model

Pair : H++H--

Mixing: $H^{\pm\pm}$, H^{\pm} , A^0 , H^0 , h^0 (SM-like Higgs) associated H⁻H⁺⁺

 $\leftarrow H^{\pm\pm} \rightarrow W^{\pm} W^{\pm} \rightarrow H^{\pm} \rightarrow W^{\pm} Z \rightarrow$

JHEP 06, 146 (2021)

Jan.-June 2021

Th/exp constraint parameters

 $m_{H^{\pm\pm}} < m_{H^{\pm}} - 100 \text{ GeV};$

 $|m_{H\pm\pm}^{}-m_{H\pm}^{}| \leq 5 \text{ GeV}$

• Final state: multileptons, 21 same charge, MET

Counting experiment

 $\gamma^*/Z^* \stackrel{H}{\to}$

hMSSM summary

Run 2, √s=13 TeV, L=139 fb⁻¹, ATL-PHYS-PUB-2021-030

hMSSM (habemous MSSM ?)
 m_h~125 GeV
 →(tan β, m_A) enough to describe phase space

Exotic Higgs summary $H \rightarrow XY$

April 2021 (no inclusion of later analyses) Run 2, $\sqrt{s}=13$ TeV, L=139 fb⁻¹, ATL-PHYS-PUB-2021-008

Remark : constraint BR(H \rightarrow undetected)<16 % (95 % CL) from Higgs combination

			Leptons			Bosons		Quarks		S 2	X	Mesons							
		e^{\pm}	μ^{\pm}	τ^{\pm}	Z	W	γ	q/g	с	b	Inv.	ϕ, ho	$J/\psi, \Upsilon$	$\ell^{\pm}\ell^{\mp}$	$\tau^{\pm}\tau^{\mp}$	$q\bar{q}/gg$	γγ	bĒ	Other
	e [∓]	[12]	[12]	[13]															
Ŷ	μ^{\mp}	IEV	[14]	[13]															
	τ^{\mp}			SM															
	Z/Z^*				SM		[15]				-	-	[3]	[7]	-	[3]	-	-	-
	W/W^*					SM													-
	γ						SM				[16]	[17]	[18]	[19]	-	-	-	_	-
	<i>q/g</i>							_	-	-									
	с								[20]										
	b									SM									
	Inv.										[21]			-	-	-	-	-	-
	ϕ, ho											-	-						
	$J/\psi,\Upsilon$												_						
	$\ell^{\pm}\ell^{\mp}$													[7]	[10]	_	-	[2]	-
	$\tau^{\pm}\tau^{\mp}$														_	-	_	_	_
	q q /gg															_	[6]	_	_
	γγ																[<mark>9</mark>]	-	-
	bb																	[4, 5]	-
	Other																		Many LLP

Model independent limits: pseudo-scalar, 2HDM+S types I, II, III, IV

87