Higgs Mass - Width - CP Higgs 2021

Oct. 19 2021

Savvas Kyriacou (Johns Hopkins University)

On behalf of the **ATLAS** and **CMS** collaborations

The Higgs properties

Mass

- Measurements in high resolution channels
 - $H \rightarrow 4I$ and $H \rightarrow \gamma \gamma$
- Multiple combinations between Run1 Run2 and channels

Width

- Onshell measurements
- Offshel measurements (NEW RESULTS !!!)

CP in Higgs couplings (NEW RESULTS!!!)

- HVV
- Yukawa (tt, ττ)
- Hgg

Mass: $H \rightarrow 2\gamma + H \rightarrow 4I, H \rightarrow 4I(ATLAS)$

Phys. Lett. B 784 (2018) 345 ATLAS-CONF-2020-005

H→2γ + H→4l (partial Run2 '16)

H→4I:

- Constrain m12 to mz to improve mH resolution
- BDT for sig. / backgr. separation

$H \rightarrow \gamma \gamma$:

- Tight isolation req. for photons
- NN based diphoton vertex selection
- Per event resolution and signal to background categorization
- Photon energy uncertainty dominates in diphoton channel
- Combination with Run1 results

H→4l full Run2:

- J/ψ , Z used to improve μ pt resolution
- BDT for ZZ*/HZZ* separation with H pt, η and Matrix element based discriminant
- Per-event NN based resolution (σ_i) estimation
- DCB fit

First Full Run2 result!!!

 m_H 124.92 ± 0.19(stat.)^{+0.09}_{-0.06}(syst.) GeV.

Savvas Kyriacou (Johns Hopkins Uni.)

Mass: $H \rightarrow 4I, H \rightarrow 2\gamma + H \rightarrow 4I$ (CMS)

JHEP11 (2017) 047 Phys. Lett. B 805 (2020) 135425

5

H→4l (partial Run2 '16)

- MELA based discriminant for signal/background separation
- MZ1 constrainted
- 3 lepton channels (4e,4μ,2e2μ)
- Perform fit in an inclusive category
- 3D fit (D $_{\rm bkg}$ / m4l / $\sigma_{\rm m4l}$ m4l)
- Most precise single channel measurement

 $m_{\rm H}$ (GeV) 125.26 ± 0.21

$H \rightarrow \gamma \gamma + H \rightarrow 4I$ (partial Run2 '16)

- BDT based diphoton vertex selection
- BDT photon ID selection
- Background extracted with discreet profiling method
- Improved detector calibration
- Use electrons to study energy scale uncertainties and propagate to photons

Combined with 4l '16 + RUN1

Most precise measurement to-date!

$$m_{\rm H} = 125.38 \pm 0.14 \,{\rm GeV}$$

Savvas Kyriacou (Johns Hopkins Uni.)

CMS Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) Stat. Only - Total 2016: 35.9 fb⁻¹ (13 TeV) Total (Stat. Only) Run 1 H $\rightarrow \gamma \gamma$ 124.70 ± 0.34 (± 0.31) GeV Bun 1 H \rightarrow ZZ \rightarrow 4 125.59 ± 0.46 (± 0.42) GeV Run 1 Combined 125.07 ± 0.28 (± 0.26) GeV 2016 H→yy 125.78 ± 0.26 (± 0.18) GeV 125.26 ± 0.21 (± 0.19) GeV $2016 H \rightarrow ZZ \rightarrow 4I$ 2016 Combined 125.46 ± 0.16 (± 0.13) GeV 125.38 ± 0.14 (± 0.11) GeV Run 1 + 2016 122 123 124 125 126 127 128 129 m_H (GeV) **HIGGS 2021**

H measurements

Savvas Kyriacou (Johns Hopkins Uni.)

JHEP11 (2017) 047

$\Gamma_{\rm H}$: H \rightarrow 4l Onshell (CMS)

- Extract the width from the Breit-Wigner lineshape
- Limited by detector resolution $\Gamma_{\rm H}$ < 1.1GeV at 95% CL

CMS also performed a Higgs lifetime measurement ct : $\Gamma_{H} > 3.5 \times 10^{-9} {\rm ~MeV}$

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

cτ_H (μm)

Phys. Lett. B 786 (2018) 223

3

2σ

5

 $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$

10

12 13 TeV, 36.1 fb⁻¹

 $H^* \rightarrow ZZ \rightarrow 41,212\nu$

 $\mu_{\text{off-shell}}^{\text{gg} \rightarrow \text{H}^{\star} \rightarrow \text{ZZ}} / \mu_{\text{off-shell}}^{\text{VBF H}^{\star} \rightarrow \text{ZZ}} = 1$

Expected-Stat. only

5

μ _{off-shell}

---- Observed-Stat. only Observed

4

Expected

Γ_H: Offshell (ATLAS)

Events / 50 GeV

50

30

20

ATLAS

√s = 13 TeV, 36.1 fb⁻¹

 $H^* \rightarrow ZZ \rightarrow 2e2v$

Data

WZ

Uncertainty

 $gg+VBF\rightarrow (H^*\rightarrow)ZZ(\mu_{off-shall}=5)$

qq+VBF→(H^{*}→)ZZ(SM)

Other backgrounds

- Measure ratio of onshell and offshell yields ٠
- Background interferes destructively with signal • Events / SM in offshell!
- $H \rightarrow 4I + H \rightarrow 2I2v$ combination
- $220 \text{GeV} < m_{41} < 2 \text{ TeV}$
- Fit: D_{MF} (4I) and M_T^{ZZ} (2I2v)
- '15+'16 data
- Upper bound set

Savvas Kyriacou (Johns Hopkins Uni.)

Г_н: Offshell (CMS) NEV

- Analysis of offshell $H \rightarrow 2I2v$ Full Run2
- Multiple CR for background estimations
 - Reducible Z+jets background estimated from γ +jets CR
 - e/μ CR for WW/tt backgrounds

Observed

gg SM total

Total (Γ_u=0 MeV)

Total (Γ_H=20 MeV)

- Trilepton CR for $qq \rightarrow ZZ$
- Other backgrounds estimated from simulation
- Events split in Nj categ. + 2e or 2μ

Savvas Kyriacou (Johns Hopkins Uni.)

This talk focuses on measurements with **CP sensitive observables**

(and not general AC)

CP: HVV in $H \rightarrow 4I$ (CMS)

- MELA based discriminants (categorization + measurement)
- Categories:
 - Untagged, Boosted, VBF 1jet, VBF 2jet, VHHadr. , VHLept.
- **Production + Decay** information incorporated
- Parametrization using mass eigenstate basis (Higgs basis)

$$A(\text{HVV}) = \frac{1}{v} \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{\text{V1}}^{2} + \kappa_{2}^{\text{VV}} q_{\text{V2}}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} + \frac{\kappa_{3}^{\text{VV}} (q_{\text{V1}} + q_{\text{V2}})^{2}}{\left(\Lambda_{Q}^{\text{VV}}\right)^{2}} \right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*}$$
$$+ \frac{1}{v} a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$
$$\mathbf{V} = \mathbf{W}, \mathbf{Z}, \mathbf{g}, \mathbf{y}$$

$$\begin{split} \mathcal{D}_{alt}\left(\Omega\right) &= \quad \frac{\mathcal{P}_{sig}\left(\Omega\right)}{\mathcal{P}_{sig}\left(\Omega\right) + \mathcal{P}_{alt}\left(\Omega\right)} \text{,} \\ \mathcal{D}_{int}\left(\Omega\right) &= \quad \frac{\mathcal{P}_{int}\left(\Omega\right)}{2 \sqrt{\mathcal{P}_{sig}\left(\Omega\right) \ \mathcal{P}_{alt}\left(\Omega\right)}} \text{,} \end{split}$$

CP: HVV in $H \rightarrow 4I$ (CMS)

fai measurements:

Effective fractional xsec:

$$f_{ai}^{\rm VV} = \frac{|a_i^{\rm VV}|^2 \,\alpha_{ii}^{\rm (dec)}}{\sum_j |a_j^{\rm VV}|^2 \,\alpha_{jj}^{\rm (dec)}} \, \text{sign}\left(\frac{a_i^{\rm VV}}{a_1}\right)$$

Coupling	Fraction	Approach 1	Approach 2
a_i^{VV}	$f_{ai}^{\rm VV}$	α_{ii}/α_{11}	α_{ii}/α_{11}
<i>a</i> ₃	f_{a3}	0.153	0.153
a_2	f_{a2}	0.361	6.376
κ_1	$f_{\Lambda 1}$	0.682	5.241
$\kappa_2^{Z\gamma}$	$f_{\Lambda 1}^{Z\gamma}$	1.746	N/A

direct couplings measurements:

Anomalous contributions modify the total width!

$$\sigma(i \to H \to f) \propto \frac{\left(\sum \alpha_{jk} g_j g_k\right) \left(\sum \alpha_{lm} g_l g_m\right)}{\Gamma_{\text{tot}}}$$
$$\Gamma_{\text{tot}} = \sum_f \Gamma_f = \Gamma_{\text{tot}}^{\text{SM}} \times \sum_f \left(\frac{\Gamma_f^{\text{SM}}}{\Gamma_{\text{tot}}^{\text{SM}}} \times \frac{\Gamma_f}{\Gamma_f^{\text{SM}}}\right) = \Gamma_{\text{tot}}^{\text{SM}} \times \sum_f \left(\mathcal{B}_f^{\text{SM}} \times \overline{R_f(\vec{g}_j)}\right)$$

$$\begin{aligned} R_{ZZ/Z\gamma^*/\gamma^*\gamma^*} &= \left(\frac{g_1^{ZZ}}{2}\right)^2 + 0.1695 \left(\kappa_1^{ZZ}\right)^2 + 0.09076 \left(g_2^{ZZ}\right)^2 + 0.03809 \left(g_4^{ZZ}\right) \\ &+ 0.8095 \left(\frac{g_1^{ZZ}}{2}\right) \kappa_1^{ZZ} + 0.5046 \left(\frac{g_1^{ZZ}}{2}\right) g_2^{ZZ} + 0.2092 \kappa_1^{ZZ} g_2^{ZZ} \\ &+ 0.1023 \left(\kappa_2^{Z\gamma}\right)^2 + 0.1901 \left(\frac{g_1^{ZZ}}{2}\right) \kappa_2^{Z\gamma} + 0.07429 \kappa_1^{ZZ} \kappa_2^{Z\gamma} + 0.04710 g_2^{ZZ} \kappa_2^{Z\gamma} \end{aligned}$$

$$\begin{split} \delta c_z &= \frac{1}{2}a_1 - 1, \\ c_{z\Box} &= \frac{m_Z^2 s_w^2}{4\pi\alpha} \frac{\kappa_1}{(\Lambda_1)^2} \\ c_{zz} &= -\frac{s_w^2 c_w^2}{2\pi\alpha} a_2, \\ \tilde{c}_{zz} &= -\frac{s_w^2 c_w^2}{2\pi\alpha} a_3. \end{split}$$

Savvas Kyriacou (Johns Hopkins Uni.)

Observed, fix others

Expected, fix others

Observed, float others

Expected, float others

Ó

T_{A1}

0.02

H⁰

137 fb⁻¹ (13 TeV)

95% CL

68% CL

0.2 0.4 0.6 0.8

CP: HVV in $H \rightarrow 4I$ (CMS)

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

Non SU(2)xU(1) results in back up:

Savvas Kyriacou (Johns Hopkins Uni.)

H⁰

CP: HVV in $H \rightarrow 4I$ (CMS)

Constraints in Lagrangian coupling in Higgs basis

			Iranslated to warsaw basis:			
Channels	Coupling	Observed	Channels	Coupling	Observed	Expected
VBF & VH & H $\rightarrow 4\ell$	δc_{z} c_{zz} $c_{z\square}$ \tilde{c}_{zz}	$\begin{array}{c} -0.03\substack{+0.06\\-0.25}\\0.01\substack{+0.11\\-0.10}\\-0.02\substack{+0.04\\-0.04}\\-0.11\substack{+0.30\\-0.31}\end{array}$	VBF &VH & H $\rightarrow 4\ell$	C _{H□} C _{HD} C _{HW} C _{HWB} C _{HB} C _{HŴB} C _{HĨB}	$\begin{array}{c} 0.04\substack{+0.43\\-0.45}\\-0.73\substack{+0.97\\-4.21}\\0.01\substack{+0.18\\-0.17}\\0.01\substack{+0.20\\-0.18}\\0.00\substack{+0.05\\-0.05}\\-0.23\substack{+0.51\\-0.52}\\-0.25\substack{+0.56\\-0.57}\\-0.06\substack{+0.15\\-0.16}\end{array}$	$\begin{array}{c} 0.00 \substack{+0.75 \\ -0.93} \\ 0.00 \substack{+1.06 \\ -4.60} \\ 0.00 \substack{+0.39 \\ -0.28} \\ 0.00 \substack{+0.42 \\ -0.31} \\ 0.00 \substack{+0.03 \\ -0.08} \\ 0.00 \substack{+1.11 \\ 0.00 \substack{+1.11 \\ -1.21} \\ 0.00 \substack{+0.33 \\ -0.33} \end{array}$

Savvas Kyriacou (Johns Hopkins Uni.)

CMS-PAS-HIG-20-007

H⁰

CP: HVV from $H \rightarrow \tau \tau + H \rightarrow 4I$ (CMS) NEWIII

Full Run2 analysis

- Parametrization of AC as in $H \rightarrow 4I$
- Dedicated **MELA** discriminants
- Information from **production**
- Single AC scans
- Results combined with $H \rightarrow 4I$
- Use 2 EFT approaches:
 - without $SU(2) \times U(1)$ (Appr 1.)
 - with (Appr. 2.) •

See also dedicated talk by Daniel

Savvas Kyriacou (Johns Hopkins Uni.)

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

18

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

 $\alpha^{H\tau\tau}(degrees)$

19

KT

Phys. Lett. B 805 (2020) 135426

CP: HVV from H→ττ (ATLAS)

Savvas Kyriacou (Johns Hopkins Uni.)

Savvas Kyriacou (Johns Hopkins Uni.)

Phys, Rev. Lett. 125 (2020) 061802

CP: Yukawa ttH with ttH,H $\rightarrow\gamma\gamma$ (ATLAS)

Analysis targets **CP mixing angle and kt**

$$\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i \sin(\alpha) \gamma_5] \psi_t \} H$$

Classify ttH events in hadronic and leptonic

- lept: require at least single isolated lepton
- had: at least 2 jets

Use production information

Dedicated signal-background BDT

BDT CP: use top and diphoton system kinematics

Fit myy in overall 20 categories (12Had + 8Lept)

Tightly constrain pure CP odd ttH coupling Full Run 2

See also dedicated talk by Chiara

Savvas Kyriacou (Johns Hopkins Uni.)

CERN-EP-2021-096

H⁰

- Use production information
- Assume HVV -SM like
- BDT to separate signal and background
- 12 categories BDT and Δηjj
 - CP odd/even separation in ΔΦjj enhanced in high Δηjj
- Backgrounds constrained in CR

See also dedicated talk by Chiara

Savvas Kyriacou (Johns Hopkins Uni.)

CERN-EP-2021-096

$CP: Hgg in H \rightarrow WW^* \rightarrow ev\mu v+jj (ATLAS)$ H⁰

use BDT and $\Delta \Phi j j$ distributions for fitting

Fit $\Delta \phi_{ij}$ in SR: 3 BDT X 4 $|\Delta \eta_{ij}|$ regions

- 2 likelihood fits:
 - Shape only considered scan (BSM rate floated)
 - Shape + fix rate to BSM scenario

1σ constraints on CP mixing angle

Savvas Kyriacou (Johns Hopkins Uni.)

Savvas Kyriacou (Johns Hopkins)

HIGGS 2021

 \mathbf{C}_{gg}

Summary

Mass:

- CMS most precise measurement with Run1 + partial Run2

- ATLAS first Full Run2 in H→4l

Width:

- Offshell 2l2v + 4l using full Run2 2l2v by CMS NEW!!!
- Γ_H= 3.2 +2.4/-1.7 MeV

CP:

- Multiple Full Run2 results
- Combinations from dif. decay modes
- EFT interpretations

- HVV CP odd couplings well constrained

- Full Run2 constraints on HVV by CMS
- Full Run2 Combination in H4l and H $\tau\tau$ by CMS NEW!!!
- Full Run2 on ttH by ATLAS and CMS
- Full Run2 Yukawa ττΗ couplings by CMS New!!!
- CMS first full Run2 ggH CP analysis New!!!

Additional Material

Savvas Kyriacou (Johns Hopkins Uni.)

Phys. Lett. B 784 (2018) 345

Mass: $H \rightarrow 4I + H \rightarrow \gamma\gamma$ (ATLAS)

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

H→4I:

- Constrain m12 to mz to improve mH resolution
- BDT for sig. / backgr. separation

$H \rightarrow \gamma \gamma$:

- Tight isolation req. for photons
- NN based diphoton vertex selection
- Per event resolution and signal to background categorization
- Photon energy uncertainty dominates in diphoton channel
- Results compatible with LHC Run1 combination

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

 m_{μ} [GeV]

ATLAS-CONF-2020-005

Mass: H→4I (ATLAS)

Savvas Kyriacou (Johns Hopkins Uni.)

JHEP11 (2017) 047

Mass: H→ 4I(CMS)

- MELA based discriminant for signal/background separation
- MZ1 constrainted
- 3 lepton channels (4e,4µ,2e2µ)
- Perform fit in an inclusive category
- 3D fit (D $_{\rm bkg}^{\rm kin}$ / m4l $\,$ / $\sigma_{\rm m4l}^{}|$ m4l)
- Most sensitive single channel measurement

 $m_{\rm H}$ (GeV) 125.26 \pm 0.21

Savvas Kyriacou (Johns Hopkins Uni.)

Mass: $H \rightarrow \gamma \gamma (CMS)$

- Use electrons to study energy scale uncertainties and propagate to photons
- Include uncertainties for $e-\gamma$ diferences

Simulation smeared to match data resolution

115

110

120

125

130

135

m_{γγ} (GeV)

Чаньысььени 130 135 140

m_{vv} (GeV)

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

05 110 115 120

120

125

Phys. Lett. B 805 (2020) 135425

Mass: $H \rightarrow 4I + H \rightarrow \gamma\gamma$ (CMS)

Savvas Kyriacou (Johns Hopkins Uni.)

Higgs Width – lifetime + ac

Width CMS 2l2nu

Savvas Kyriacou (Johns Hopkins Uni.)

Phenomenology and EFT

Parametrize H couplings in the mass eingestate base:

$$\begin{split} A(\mathrm{Hff}) &= -\frac{m_{\mathrm{f}}}{v} \bar{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i}\,\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\right) \psi_{\mathrm{f}} \\ A(\mathrm{HVV}) &= \frac{1}{v} \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{VV}} \left(q_{\mathrm{V1}} + q_{\mathrm{V2}}\right)^{2}}{\left(\Lambda_{Q}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} \\ &+ \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \end{split}$$

$$\mathbf{a}_{i}^{VV} = \mathbf{g}_{i}^{VV}_{\text{ for } i = 1,2} \quad \mathbf{a}_{3}^{VV} = \mathbf{g}_{4}^{VV}$$
$$\mathbf{g}_{\Lambda 1}^{ZZ,WW} = \frac{\kappa_{1}^{WW}}{(\Lambda_{1}^{WW})^{2}} \quad \frac{\kappa_{1}^{ZZ}}{(\Lambda_{1}^{ZZ})^{2}}$$
$$\mathbf{g}_{\Lambda 1}^{Z\gamma} = \frac{\kappa_{2}^{Z\gamma}}{(\Lambda_{1}^{Z\gamma})^{2}}$$

a1 SM a2 CP even AC a3 CP odd AC

Amplitude Related to a fundamental Lagrangian density \rightarrow couplings related to the Lagrangian coefficients

$$\begin{split} \mathcal{L}_{\rm hvv} &= \quad \frac{h}{v} \left[(1 + \delta c_z) \, \frac{(g^2 + g'^2) v^2}{4} Z_\mu Z_\mu + c_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{z\Box} g^2 Z_\mu \partial_\nu Z_{\mu\nu} + \tilde{c}_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \\ &+ (1 + \delta c_w) \, \frac{g^2 v^2}{2} W^+_\mu W^-_\mu + c_{ww} \frac{g^2}{2} W^+_{\mu\nu} W^-_{\mu\nu} + c_{w\Box} g^2 \left(W^-_\mu \partial_\nu W^+_{\mu\nu} + {\rm h.c.} \right) + \tilde{c}_{ww} \frac{g^2}{2} W^+_{\mu\nu} \tilde{W}^-_{\mu\nu} \\ &+ c_{z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} + \tilde{c}_{z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} \tilde{A}_{\mu\nu} + c_{\gamma\Box} gg' Z_\mu \partial_\nu A_{\mu\nu} \\ &+ c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + c_{gg} \frac{g_s^2}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \tilde{c}_{gg} \frac{g_s^2}{4} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \right] \,, \end{split}$$

 $\delta c_z = \frac{1}{2}a_1 - 1$ $c_{z\Box} = \frac{m_Z^2 s_w^2}{e^2} \frac{\kappa_1}{(\Lambda_1)^2}$ $c_{zz} = -\frac{2s_w^2 c_w^2}{e^2} a_2$ $\tilde{c}_{zz} = -\frac{2s_w^2 c_w^2}{e^2} a_3$ $c_{gg} = -\frac{1}{2\pi\alpha_s} a_2^{gg}$ $\tilde{c}_{gg} = -\frac{1}{2\pi\alpha_s} a_3^{gg}$

Savvas Kyriacou (Johns Hopkins Uni.)

Symmetries and more...

- Onshell Zγ and γγ couplings well constrained
- Custodial symmetry
- Consider g^{ww} = g^{zz}

5 independent HVV couplings

Or...

• **Consider SU(2)xU(1)** \rightarrow enforces relations between couplings:

$$\begin{split} g_1^{WW} &= \begin{pmatrix} g_1^{ZZ} \\ g_2^{WW} &= c_w^2 g_2^{ZZ} + s_w^2 g_2^{\gamma\gamma} + 2s_w c_w g_2^{Z\gamma}, \\ g_4^{WW} &= c_w^2 g_4^{ZZ} + s_w^2 g_4^{\gamma\gamma} + 2s_w c_w g_4^{Z\gamma}, \\ \frac{\kappa_1^{WW}}{(\Lambda_1^{WW})^2} (c_w^2 - s_w^2) &= \begin{pmatrix} \kappa_1^{ZZ} \\ (\Lambda_1^{ZZ})^2 \end{pmatrix}, + 2s_w^2 \frac{g_2^{\gamma\gamma} - g_2^{ZZ}}{M_Z^2} + 2\frac{s_w}{c_w} (c_w^2 - s_w^2) \frac{g_2^{\gamma\gamma}}{M_Z^2}, \\ \frac{\kappa_2^{Z\gamma}}{(\Lambda_1^{Z\gamma})^2} (c_w^2 - s_w^2) &= 2s_w c_w \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} + \frac{g_2^{\gamma\gamma} - g_2^{ZZ}}{M_Z^2} \right) + 2(c_w^2 - s_w^2) \frac{g_2^{\gamma\gamma}}{M_Z^2}, \end{split}$$

4 independent HVV couplings

Savvas Kyriacou (Johns Hopkins Uni.)

CP: HVV in $H \rightarrow 4I$ (CMS)

- Non-SMEFT with 4 independent A.C.
- Simultaneous scan of all AC considered
- Non-zero minima
- SM consistent

Summary of HVV/Hff results

Parameter	Scenario		Observed	Expected
f _{a3}	Approach 1 $f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00000\\ [-0.00017, 0.00017]\\ [-0.0010, 0.0038] \cup [0.01, 0.24]\\ \pm 0.010\\ [-0.042, 0.034]\\ [-0.20, 0.20]\\ 0.00005\\ [-0.00013, 0.00066]\\ [-0.0010, 0.0028] \cup [0.024, 0.092] \end{array}$	0.00000 [-0.0081, 0.00081] [-0.0056, 0.0056] 0.00000 [-0.0088, 0.00088] [-0.0057, 0.0057] 0.0000 [-0.0012, 0.0012] [-0.0074, 0.0074]
f _{a2}	Approach 1 $f_{a3} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a3}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00000\\ [-0.00031, 0.00098]\\ [-0.0033, 0.0039]\\ -0.29\\ [-0.50, -0.18] \cup [-0.00024, 0.00052]\\ [-0.68, -0.05] \cup [-0.027, 0.185]\\ & \cup [0.38, 0.55]\\ -0.0001\\ [-0.0024, 0.0008]\\ [-0.0209, 0.0133]\end{array}$	$\begin{array}{c} 0.0000\\ [-0.0012, 0.0013]\\ [-0.0095, 0.0081]\\ 0.0000\\ [-0.0018, +0.0013]\\ [-0.0106, 0.0081]\\ 0.0000\\ [-0.0053, 0.0033]\\ [-0.0869, 0.0055] \end{array}$
— <i>f</i> _{A1} —	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float f_{a3}, f_{a2}	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00000\\ [-0.00009, 0.00022]\\ [-0.00036, 0.00110] \cup [0.002, 0.135]\\ 0.13\\ [-0.00012, 0.00015] \cup [0.02, 0.24]\\ [-0.16, -0.01] \cup [-0.0056, 0.3423]\\ 0.00019\\ [-0.00017, 0.00168]\\ [-0.0019, 0.0055] \cup [0.10, 0.29] \end{array}$	0.00000 [-0.00016, 0.00025] [-0.00081, 0.00112] 0.00000 [-0.00017, 0.00036] [-0.00089, 0.00144] 0.0000 [-0.0012, 0.0029] [-0.0060, 0.0103]
$-f_{\Lambda 1}^{Z\gamma}$	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} -0.0004 \\ [-0.0010, 0.0014] \\ [-0.0063, 0.0060] \cup [0.05, 0.21] \\ -0.06 \\ [-0.18, -0.02] \cup [-0.00049, 0.00058] \\ [-0.53, 0.52] \end{array}$	0.0000 [-0.0026, 0.0020] [-0.0102, 0.0091] 0.0000 [-0.0026, 0.0025] [-0.011, 0.011]

HIG-19-009

Savvas Kyriacou (Johns Hopkins Uni.)

Couplings constraints from $H \rightarrow 4I$ / gg \

$$f_{a3}^{ggH} = \frac{|a_3^{oo}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{oo}}{a_2^{gg}}\right)$$
$$f_{CP}^{Hff} = \frac{|\tilde{\kappa}_f|^2}{|\kappa_f|^2 + |\tilde{\kappa}_f|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_f}{\kappa_f}\right)$$

1 2212

Assuming only top/b in ggH:

$$|f_{CP}^{\text{Hff}}| = \left(1 + 2.38 \left[\frac{1}{|f_{a3}^{\text{ggH}}|} - 1\right]\right)^{-1} = \sin^2 \alpha^{\text{Hff}}$$

Channels	Coupling	Observed	Expected	Observed correlation			
				c _{gg}	õ _{gg}	κ_{t}	$\tilde{\kappa}_{t}$
tH &ttH &ggH	C_{gg}	$-0.0012^{+0.0022}_{-0.0174}$	$0.0000^{+0.0019}_{-0.0196}$	1	-0.050	-0.941	+0.029
	\tilde{c}_{gg}	$-0.0017^{+0.0160}_{-0.0130}$	$0.0000^{+0.0138}_{-0.0138}$		1	+0.046	-0.568
	$\kappa_{\rm t}$	$1.05_{-0.20}^{+0.25}$	$1.00\substack{+0.34\\-0.26}$			1	+0.168
	$\tilde{\kappa}_{t}$	$-0.01\substack{+0.69\\-0.67}$	$0.00^{+0.71}_{-0.71}$				1
				$\delta c_{\rm z}$	C_{zz}	$C_{z\square}$	\tilde{c}_{zz}
VBF & VH & H $\rightarrow 4\ell$	$\delta c_{\rm z}$	$-0.03^{+0.06}_{-0.25}$	$0.00^{+0.07}_{-0.27}$	1	+0.241	-0.060	-0.009
	c_{zz}	$0.01_{-0.10}^{+0.11}$	$0.00_{-0.16}^{+0.22}$		1	-0.884	+0.058
	$C_{\mathbf{z}\square}$	$-0.02^{+0.04}_{-0.04}$	$0.00^{+0.06}_{-0.09}$			1	+0.020
	\tilde{c}_{zz}	$-0.11^{+0.30}_{-0.31}$	$0.00^{+0.63}_{-0.63}$				1

Savvas Kyriacou (Johns Hopkins Uni.)

ggH ttH

ніддэ 2021

ggH ttH

Phys. Rev. D 99 (2019) 112003 CP: HVV in H→4l offshell (CMS)

- AC parametrization and analysis strategy as in HVV, $H \rightarrow 4l$ onshell
- AC greatly affect offshell H production
- Background interferes with signal \rightarrow more challenging analysis
- AC, Γ_{H} simultaneous measurement
- Individual AC scanned
- First Offshell AC measurement

CMS

- 95% CL

· 68% CL

Best Fit

80

70

60

50 L

30

20

10

Yukawa ttH , Hyy ATLAS

CERN-EP-2021-096

H⁰

HVV in H \rightarrow WW* \rightarrow evµv+jj (ATLAS)

- Parametrize anomalous contributions in terms of V polarization contributions
- approximate mapping done to constrain pseudo-observables
- Utilize BDT and ΔΦjj
- Categorize events with BDT +cuts
- Dominant top quark and Z+jets backgrounds constrained by CRs
- Results consistent with SM

$$a_{\rm L} = \frac{g_{HV_{\rm L}}V_{\rm L}}{g_{HVV}}, \ a_{\rm T} = \frac{g_{HV_{\rm T}}V_{\rm T}}{g_{HVV}}$$

H→4l off-shell

anomalous couplings : \rightarrow increase the number of off-shell events

Savvas Kyriacou (Johns Hopkins Uni.)

HIGGS 2021

HIG-18-002