

RECENT PROGRESS IN PRECISION CALCULATIONS Alexander Huss (CERN)

Higgs 2021 — October 19th 2021

J

Higgs for precision pheno!

signal strengths ---> differential spectra

• • •

 Higgs properties (couplings, potential, ...)

HL-LHC (3000 fb^{-1})

years

20

+

theory uncertainties scaled down by factor 2!

WHERE DO WE STAND?

ggF (~ 88.2%)

VBF ($\sim 6.8\%$)

VH (~4.1%)

ttH ($\sim 0.9\%$)

Unprecedented level of sophistication:

- inclusive production @ N³NLO_{QCD}
 & differential @ NNLO_{QCD} (¬ ttH)
 + NLO_{EW}
- all decay channels @ (at least)
 NNLO_{QCD} + NLO_{EW}
- in association with jets:
 NLO_{QCD} + PS

S. Plätzer & F. Siegert

 $b\bar{b} \rightarrow H @ N^{3}LO$ [Duhr, Dulat, Mistlberger '19]

GLUON FUSION

Large QCD corrections \hookrightarrow known to N³LO

Full *m*_t @ NNLO

[Davies, Gröber, Maier, Rauh, Steinhauser '19] [Czakon, Niggetiedt '20]

[Jones, Kerner, Luisoni '18] [Frellesvig, Hidding, Maestri, Moriello, Salvatori '20]

big obstacle! (stability & efficiency)

numerical solutions					
to differential	channel	$ \begin{array}{c} \sigma^{\rm NNLO}_{\rm HEFT} ~[{\rm pb}] \\ \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_s^3) + \mathcal{O}(\alpha_s^4) \end{array} $	$egin{aligned} & (\sigma^{ m NNLO}_{ m exact} \ & \mathcal{O}(lpha_s^3) \end{aligned}$	$-\sigma^{ m NNLO}_{ m HEFT})~[m pb] \ {\cal O}(lpha_s^4)$	$(\sigma_{\mathrm{exact}}^{\mathrm{NNLO}}/\sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}}-1)$
equations	$\sqrt{s} = 8 \mathrm{TeV}$				
300	gg	7.39 + 8.58 + 3.88	+0.0353	$+0.0879 \pm 0.0005$	+0.62
200	qg	0.55 + 0.26	-0.1397	-0.0021 ± 0.0005	-18
0.0 0.5 Å	qq	0.01 + 0.04	+0.0171	-0.0191 ± 0.0002	-4
0.4 Z 0.6	total	7.39 + 9.15 + 4.18	-0.0873	$+0.0667 \pm 0.0007$	-0.10
0.8 0.0	$\sqrt{s} = 13 \mathrm{TeV}$				
$2 \mathrm{Re} \langle M_{\mathrm{exact}}^{(1)} M_{\mathrm{exact}}^{(2)} \rangle \Big _{\mathrm{regulated}}$	gg	16.30 + 19.64 + 8.76	+0.0345	$+0.2431 \pm 0.0020$	+0.62
	qg	1.49 + 0.84	-0.3696	-0.0115 ± 0.0010	-16
	qq	0.02 + 0.10	+0.0322	-0.0501 ± 0.0006	-15
	total	16.30 + 21.15 + 9.79	-0.3029	$+0.1815 \pm 0.0023$	-0.26

M. Niggetiedt

[Czakon, Harlander, Klappert, Niggetiedt '20]

- Result: $\delta \sigma = -0.26\%$ ($\sqrt{s} = 13$ TeV)
- intricate cancellations
 - positive (+0.62%) corrections to gg
 - negative (-15%) corrections to qg & qq

MIXED QCD×EW EFFECTS

Dominant light-quark contribution to gluon fusion:

[Bonetti, Melnikov, Tancredi '17]

Previous estimates:

- Soft approx. [Bonetti, Melnikov, Tancredi '18]
- $M_{\rm H} \ll M_V \label{eq:MH} M_V \label{eq:MH}$ [Anastasiou, Boughezal, Petriello '09]
- ► M_H ≫ M_V [Anastasiou, Del Duca, Furlan, Mistlberger, Moriello, Schweitzer, Specchia '19]

Exact:

5.1 %

uncertainty: $\delta(\text{EW}) \sim 0.6\%$

[Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer '20]

• flat *K*-factor in $Y_{\rm H}$

• favours factorized EW corrections: $\sigma = \sigma_{\text{LO}} (1 + \delta_{\text{QCD}}) \times (1 + \delta_{\text{EW}})$

GLUON FUSION – THE ERROR BUDGET

[Czakon, Harlander, Klappert, Niggetiedt '20]

Remove one source of uncertainty!

Future:

- light-quark mass effects
 - large logs to resum?

[Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer '20]

Reduce uncertainty: $\sim 1\% \rightarrow 0.6\%$

Future:

- quark-induced EW contributions
- large $p_{\rm T}^{\rm H}$?
- $m_{\rm t}$ dependence in QCD amplitude?

Sources of Uncertainties:

• $\delta(PDF - TH)$ — missing N³LO PDFs (AP kernels)

HIGGS ON N3LO ---> GOING DIFFERENTIAL

What is the probability of producing a Higgs boson?

[Anastasiou et al. '15] [Mistlberger '18]

... in direction
$$Y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

[Dulat, Mistlberger, Pelloni '18]

where the Higgs decays into a pair of photons, $H \rightarrow \gamma \gamma$, and the leading and sub-leading photon have a transverse momentum that is larger than 35% and 25% of the Higgs boson mass, respectively, and are produced within the rapidity interval $|y_{\gamma}| < 2.37$, where the barrel-endcap region $1.37 < |y_{\gamma}| < 1.52$ is excluded. Photons are further required to be isolated from additional QCD activity by requiring that the scalar sum of the transverse momenta of hadrons in a cone of $\Delta R = 0.2$ around the photons is less than 5% of the photon transverse energy $E_{\rm T}$.

 $\sigma_{tot}^{\mathrm{pp} \to \mathrm{H}}$

 $d\sigma^{pp \to H}$

$$\sigma_{\text{tot}}^{\text{N}^3\text{LO}} = 48.68 \text{ pb}_{-3.16 \text{ pb}}^{+2.07 \text{ pb}}$$

• • • •

,

FULLY DIFFERENTIAL HIGGS O N³LO

Inclusive

B. Mistlberger

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni '21]

FULLY DIFFERENTIAL HIGGS O N³LO

Origin: Linear acceptance \leftrightarrow IR sensitivity "fiducial power corrections"

[Frixione, Ridolfi '97] [Ebert, Tackmann '19 + Michel, Stewart '21] [Alekhin et al. '21]

B. Mistlberger

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni '21]

|y^H|

FULLY DIFFERENTIAL HIGGS O N³LO

Origin: Linear acceptance \iff IR sensitivity "fiducial power corrections"

[Frixione, Ridolfi '97] [Ebert, Tackmann '19 + Michel, Stewart '21] [Alekhin et al. '21]

B. Mistlberger

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni '21]

HIGGS P_T @ N³LL'+NNLO₁

Enabled by various ingredients:

last missing

"N³LO beam function" ⁴

. . .

[Behring, Melnikov, Rietkerk, Tancredi, Wever '19] [Luo, Yang, Zhu, Zhu '20] [Ebert, Mistlberger, Vita '20] \longrightarrow colour-singlet @ N³LO

J. Michel & E. Re et al.

[Re, Rottoli, Torrielli '21]

fiducial power corrections absorbed by recoiling Higgs

[Catani, de Florian, Ferrera, Grazzini, '15] [Ebert, Michel, Stewart, Tackmann '20]

HIGGS \bigcirc N³LL'+N³LO₀

impact of *fiducial power corrections* (fpc)

• improved convergence with "+N³LL"

$$\begin{aligned} \sigma_{\rm fid}^{\rm FO} / \mathcal{B}_{\gamma\gamma} &= 6.928 \left[1 + (1.300 + 0.129_{\rm fpc}) + (0.784 - 0.061_{\rm fpc}) + (0.331 + 0.150_{\rm fpc}) \right] \end{aligned}$$

CUTS TO REMOVE THE IR SENSITIVITY

HIGGS @ HIGH PT

$p_{\rm T}^{\rm H} \gtrsim m_{\rm t}$

 \hookrightarrow HTL not valid \hookrightarrow full mass effects

NLO H+jet:

exact

[Jones, Kerner, Luisoni '18]

 \oplus NNLO_{HTL} \rightsquigarrow δ (scale) ~ 10 \% [Becker et al., LHCHXSWG note '20]

see also H+jets \oplus PS [Frederix, Frixione, Vryonidou, Wiesemann '16]

H+2jet @ NLO **VBF** background

• **F**'I'approx [Maltoni, Vryonidou, Zaro '14] \hookrightarrow exact Born & reals $(1-loop)^2$ [OpenLoops2] \hookrightarrow approx 2-loop $|\mathcal{M}_4^2(m_t, \mu_R^2; \{p\})|^2$ $\to |\mathcal{M}_4^1(\infty, \mu_R^2; \{p\})|^2 \frac{|\mathcal{M}_4^1(m_t; \{p\})|^2}{|\mathcal{M}_4^0(\infty; \{p\})|^2}$

• $\mathcal{O}(50\%)$ NLO corrections

VECTOR BOSON FUSION

ratio to N3LO

K. Asteriadis

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

L S \bigcirc

Rö ntsch ,51]

18

HIGGS STRAHLUNG

VH+jet @ NNLO ↔ signal modelling

• inclusive $(n_{jets} \ge 1)$ excellent convergence

sive
$$(n_{jets} \equiv 1)$$

% $(\Delta_{1j} \sim 5\%)$

$$\sigma_{\geq 1 \mathrm{j}} - \sigma_{\geq 2 \mathrm{j}}$$
 [Stuart, Tackmann '12] $\Delta_{\geq 1 \mathrm{j}}^2 + \Delta_{\geq 2 \mathrm{j}}^2$

Future: differential VH @ N³LO ?

[Gauld, Gehrmann-De Ridder Glover AH, Ma θľ 20]

BOTTOM-QUARK MASS EFFECTS WH $(H \rightarrow bb)$

Why $m_{\rm b}$?

- non-singular $g^* \rightarrow bb$ \hookrightarrow can use anti- $k_{\rm T}$ (flavour- $k_{\rm T}$)
- $\mathcal{O}(y_t y_b)$ interference \hookrightarrow minor (sub-percent)
- distributions sensitive to $m_{\rm b}$

Fiducial cross sections

Order	b quarks	$\sigma_{ m fid}~[m fb]$	$\sigma_{\rm fid}({\rm boosted})$ [fb]	
NNLO	massive	$24.225(4)^{+0.642}_{-0.742}$	$4.530(2)^{+0.071}_{-0.096}$	acceptance
	massless	$22.781(3)^{+0.791}_{-0.898}$	$4.207(1)\substack{+0.097\\-0.116}$	

[Behring, Bizoń, Caola, Melnikov, Röntsch '20]

inclusive ---> re-scaling

flav- $k_{\rm T}$ clusters earlier

CONCLUSIONS

Incredible progress in the past few years:

- gluon fusion various sources of uncertainties attacked
 - top-mass dependence @ NNLO & mixed QCD-EW effects @ NLO
- differential predictions @ N³LO
 - surprises from IR-sensitive fiducial cuts & solutions proposed
- more subtle effects; beyond stable Higgs bosons
 - inclusion of decays & bottom-quark mass effects
- much much more...
 - VBF [LesHouches '19], VBF (HH) non-fact [Dreyer, Karlberg, Tancredi '20], $bb \rightarrow H @ N^{3}LO$ [Duhr, Dulat, Hirschi, Mistlberger '20], Hbb [Pagani, Shao, Zaro '20], $t \rightarrow H$ fragmentation [Brancaccio, Czakon, Generet, Krämer '21], ttH @ NNLO non-diag [Catani, Fabre, Grazzini, Kallweit '21], ...

CONCLUSIONS

Incredible progress in the past few years:

- gluon fusion various sources of uncertainties attacked
 - top-mass dependence @ NNLO & mixed QCD-EW effects @ NLO
- differential predictions @ N³LO
 - surprises from IR-sensitive fiducial cuts & solutions proposed
- more subtle effects; beyond stable Higgs bosons
 - inclusion of decays & bottom-quark mass effects
- much much more...
 - VBF [LesHouches '19], VBF (HH) non-fact [Dreyer, Karlberg, Tancredi '20], $bb \rightarrow H @ N^{3}LO$ [Duhr, Dulat, Hirschi, Mistlberger '20], Hbb [Pagani, Shao, Zaro '20], $t \rightarrow H$ fragmentation [Brancaccio, Czakon, Generet, Krämer '21], ttH @ NNLO non-diag [Catani, Fabre, Grazzini, Kallweit '21], ...

THANK YOU FOR YOUR **ATTENTION**