

Di-Higgs results from CMS (aka, "Twice the Higgs, twice the fun")

Petar Maksimovic, Johns Hopkins on behalf of the CMS collaboration

Higgs 2021

Goals

Complementarity of channels

Petar Maksimovic, Johns Hopkins

Di-Higgs results @ CMS

Kinematic regimes

Kinematic regimes

Resolved

- Two small-R jets ("AK4")
- High signal eff
- Large bkg from QCD

- H decay products in a single large-R jet ("AK8")
- Combinatorics "solved"
- Cutting-edge
 substructure
 tools

Kinematic regimes

(Evolution of) Boosted $H \rightarrow bb$ algorithms

feed-forward NN (high-level inputs)

graph NN (low-level inputs)

- "double-b": HH results in 2016
- "Deep double-b": single boosted H→bb
 - Outperforms double-b by ~ x2
- "DeepAK8": X→HH searches in this talk
 - Slightly better ...
- "ParticleNet": VBF HH→4b in this talk
 - Outperforms DeepAK8 by ~x2

ParticleNet: state-of-the-art ML Hbb tagger

ParticleNet: state-of-the-art ML Hbb tagger

Resonant HH searches

Two benchmark models for X:

- Radion (spin-0)
- Bulk graviton (spin-2)

$X \rightarrow HH \rightarrow 4b$ (boosted)

- Two large-R jets (DeepAK8 Hbb)
- Or one large-R and two small-R jets (= semi-resolved channel)
- Bkg: dominant QCD from data, $t\bar{t} + jets$ templates from MC, fit to data in 2D ($m_{b\bar{b}}$ vs m_X)

B2G-20-004

$X \rightarrow HH \rightarrow bbWW \rightarrow bb+lqq \text{ or } bb+2l$

- H→bb with DeepAK8 Hbb tag
- $H \rightarrow WW^* \text{ or } H \rightarrow \tau \tau$:
 - Two isolated leptons, or
 - Lepton + jet w/ 2-prong substr.
- Bkg: largest $t\overline{t}$ and W + jets from templates fit to data
- Simultaneous 2D fit of $m_{b\bar{b}} \text{ vs } m_X$ in 12 regions

B2G-20-007

$X \rightarrow HH \rightarrow bbWW \rightarrow bb+lqq \text{ or } bb+2l$

- H→bb with DeepAK8 Hbb tag
- $H \rightarrow WW^* \text{ or } H \rightarrow \tau \tau$:
 - Two isolated leptons, or
 - Lepton + jet w/ 2-prong substr.
- Bkg: largest $t\overline{t}$ and W + jets from templates fit to data
- Simultaneous 2D fit of $m_{b\bar{b}} \text{ vs } m_X$ in 12 regions

B2G-20-007

Non-resonant HH searches (SM and BSM)

HH in BSM (non-resonant)

- BSM: dimension 6 operators. Parameterize using EFT approach:
 - modifications to $K_{\lambda} = \lambda / \lambda_{SM}$ and $K_t = y_t / y_{t,SM}$
 - three new interactions: C₂, C_{2g}, C_g

Non-resonant HH→bbZZ*(4I) (resolved)

- 2 pairs of OS leptons (4µ, 4e, 2e2µ) + 2 b-jets
- SR: $N_{\rm jets} \ge 2$ and $|m_{4l} 125| < 10~{
 m GeV}$
- Bkg: largest is single Higgs production!
- Fit: BDT score

HIG-20-004

Non-resonant HH→bbZZ*(4I) (resolved)

HIG-20-004

Non-resonant HH \rightarrow bb $\gamma\gamma$ (resolved)

JHEP 03 (2021) 257

- Two small-R b-jets
- Novel $H \to b \overline{b}$ jet energy regression
- DNN rejects $t \bar{t} H$ bkg
- BDTs enhance ggF & VBF
- 14 search regions

Non-resonant HH \rightarrow bb $\gamma\gamma$ (resolved)

JHEP 03 (2021) 257

Sensitivity for the SM HH production improved by a factor of ~4 w.r.t. 2016-only result!

Non-resonant HH→4b (resolved) + VBF

HIG-20-005

Non-resonant HH→4b (resolved) + VBF

HIG-20-005

Strongest upper limits on ggF HH cross-sections with SM couplings!

Comparison of limits on $\sigma/\sigma_{\rm SM}$

Non-resonant VBF HH→4b (boosted)

Negligible for high m_{HH} (highly off-shell...)

Nearly cancel for $\kappa_V = 1, \ \kappa_{2V} = 1$

• Leading contribution to scattering amplitude:

$$\mathcal{A}(V_L V_L \to HH) \approx \frac{s}{v^2} (\kappa_{2V} - \kappa_V^2)$$

- Focus on events with high $m_{HH}! \rightarrow$ Two boosted H \rightarrow bb jets
- The only channel with direct access to HHVV coupling

Non-resonant VBF HH→4b (boosted)

Petar Maksimovic, Johns Hopkins

Di-Higgs results @ CMS

B2G-21-001

Non-resonant VBF HH→4b (boosted)

Non-resonant VBF HH→4b (boosted)_□

B2G-21-001

with O(20%) at 2σ

Summary

- CMS has a vibrant and exciting HH program
 - Only recent results shown today
- Inching closer to $\kappa_{\lambda} = 1$
- Significant improvements in VBF measurements
 - No HHVV coupling $(\kappa_{2V} = 0)$ is disfavored
- Experimentally, big strides forward in boosted H→bb jet tagging:
 - ParticleNet is the most performant on the market
 - Has excellent mass decorrelation (helps bkg estimates)
 - Same platform used for mass regression
- Finish Run 2 combinations and looking forward to Run 3!

BACKUP MATERIAL

28

ParticleNet: state-of-the-art ML Hbb tagger

- Jet = a "particle cloud" (unordered set)
 - Architecture: Graph Neural Network
 - Input: particle flow candidates + secondary vertices
- Hierarchical learning approach
 - First learn "local" structures, next learn more "global" features
 - Treat the particle cloud as a graph:
 - Particles are the vertices of the graph
 Relationships between the particles are the edges of the graph

Label

Category

Higgs jet mass regression with ParticleNet

- Use same architecture, inputs, training as for PN tagger
- Training target: pole mass (signal), gen-level mass (QCD)

