

Adinda de Wit, Nicolas Morange

Higgs 2021 conference, October 21st

Introduction (or 'why do we care?')

- Run 2: large datasets
 - ~140 fb⁻¹ collected by ATLAS and CMS
 - Statistical uncertainties smaller and smaller
- Large datasets: precision calibrations
 - Electron and muon uncertainties at per-mille level
 - JES at sub-percent precision
 - B-tagging efficiency uncertainty at <1%
 - => Large reduction in experimental uncertainties
- Hence modelling more and more crucial topic

Modelling: leading concern in all Higgs analyses

Goal #1: good modelling out-of-the-box

NLO generators for ~ all processes:
 Huge success from past years
 Large effort on parameter tuning from the collaborations

 MVA techniques require excellent modelling of correlations
 Signal modelling

Goal #2: small modelling uncertainties

- Easier to achieve when Goal #1 fulfilled
- Keeping them small at the heart of analysis design
- Lots of techniques involved
- Note: Differential measurements are not a miraculous solution
 - Stat. uncertainties dominate in STXS measurements
 - But modelling uncertainties are correlated
 - Thus important for interpretations

The best Monte-Carlo is the data

Analyses make use of the data as much as possible

Let's explore those cases!

Background modelling

Textbook example: ttbb, for ttHbb

- ttbb dominant bkg and low S/B
 - Complex process to model by MC
- Very large theory uncertainty
 - Cross-section well constrained by profiling, measured ~1.3x expectation
 - But ME matching and PS uncertainties give large shape/extrapolation effect
- Different setup by ATLAS/CMS but similar modelling impact:
 - \circ ATLAS: $\Delta \mu = 0.25$
 - \circ CMS: Δ μ = 0.15

ATLAS-CONF-2020-058

ATL-PHYS-PUB-2020-024

ttH in multilepton final states: ttW/ttZ

- ttH ML: complex final states with many bkgs
- ttW/ttZ leading ones
 - Description by MC complex
 - Significant differences between generators
- Extensive use of multiclass ML techniques to separate signal / bkgs and fit ttW/ttZ
 - o Impact of bkg modelling contained
 - Large μ(ttW)~1.5 in ATLAS and
 CMS
 ATLAS-CONF-2019-045

An ubiquitous background: tt

- The LHC is a top factory
 - tt is a bkg to almost any final state
 - Even H→4ℓ
 - HWW: large bkg when Njet≥1, despite b-veto
 - VHbb: large bkg even in 0-lepton, 2 b-jets
- tt modelling
 - Good modelling of bulk of phase space by the NLO generators after tuning
 - Though sizable discrepancies remain in some cases
 - Difficulty: uncertainties in tails / corners of phase space
 - Not easy to get enough MC statistics:
 - filtering / slicing strategies
 - Future common ATLAS/CMS MC samples may help: <u>ATL-PHYS-PUB-2021-016</u>
 - Extrapolation from 'bulk' (CR) to 'corner' (SR) of phase space
 - Ambiguity between tt and Wt processes
 - Result in sizable tt modelling uncertainties in those analyses

ATLAS-CONF-2021-014

VHbb: W/Z+hf backgrounds

- W/Z+bb largest bkgs in VHbb search
- Difficulty: generate enough MC events in relevant phase space (high pT(V)), filtered for W/Z+hf
- CMS analysis (2018) uses MadGraph LO samples
 - Reweighting in pT(V) used
 - Very large uncertainty associated
- ATLAS uses Sherpa NLO samples
 - Countless CPU hours required for MC generation
 - Filters (in)efficiency, spread of MC weights

Phys. Rev. Lett. 121 (2018) 121801

Uncertainty source	Δμ		
Statistical	+0.26	-0.26	
Normalization of backgrounds	+0.12	-0.12	
Experimental	+0.16	-0.15	
b-tagging efficiency and misid	+0.09	-0.08	
V+jets modeling	+0.08	-0.07	
Jet energy scale and resolution	+0.05	-0.05	
Lepton identification	+0.02	-0.01	
Luminosity	+0.03	-0.03	
Other experimental uncertainties	+0.06	-0.05	
MC sample size	+0.12	-0.12	
Theory	+0.11	-0.09	
Background modeling	+0.08	-0.08	
Signal modeling	+0.07	-0.04	
Total	+0.35	-0.33	

VHbb: W/Z+hf backgrounds estimation

- Uncertainties constrained by profiling
 - Use of ΔRbb / mbb sidebands + multiclass BDT
 - 2-lepton: excellent control over Zbb (high purity)
 - 1-lepton: less so for Wbb (tt bkg)
- Still sizable impact from extrapolation uncertainties
 - Wbb dominant one
 - Sherpa/MadGraph difference much larger than
 Sherpa scale / matching variations
 - MC stat noise in uncertainty evaluation smoothed by use of ML techniques for n-dim reweighting

Phys. Rev. Lett. 121 (2018) 121801

Modelling smooth backgrounds

- Textbook H → γγ example
 - Narrow resonance on top of smoothly falling bkg
 - Fit of analytical functions more accurate than γγ / γ-jet MC samples
 - ∘ Also applies to $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$...
- Procedures well established since Run-1
 - CMS: Discrete profiling. Choice of function embedded in a nuisance parameter
 - Residual uncertainty very small
 - ATLAS: Select function, and estimate maximum bias 'spurious signal'
 - Requires vast amounts of MC events
 - Limitation for high luminosity

Smooth backgrounds: new techniques

ATLAS: new techniques to overcome limitations of spurious signal evaluation

- Use of very fast sim (H→µµ):
 - LO DY samples at parton-level, with parameterised detector effects
 - Spurious signal evaluated on these samples
- Functional Decomposition
 - Use series expansion to parameterize bkg shape
 - Either replacement of functional form, or use for spurious signal evaluation
- Gaussian Processes
 - Kernel encodes width of features
 - Either replacement of functional form, or use for spurious signal evaluation

Smooth backgrounds: sculpting

- Analysis selection should avoid sculpting background
 - Loss of sensitivity, difficulty modelling data-driven background
- Mitigation strategies in H→bb analyses
 - "Basic" selection: mass-decorrelated double-b taggers for boosted H→ bb
 - Event classification: mass-decorrelated ANN for VBF H→bb

Resonant backgrounds - embedding

- E.g. Z boson decays in fermionic channels
- Same signature as the signal, except for mass = hard to model using data control regions
 - "Good" control for the background likely not signal-depleted
- MC simulation does not always adequately describe data
- Even if it does would need very large samples to avoid large MC statistical uncertainties
- Hybrid solution: Embedding

Embedding - principle

- Principle in a nutshell:
 - Select a well-understood process in data, in our case Z→µµ
 - Replace the muons by simulated particles of interest: T's (ATLAS, CMS), b's (ATLAS)
- A simple idea?
 - Simulated/Real geometry don't match 100% → cannot merge at level of hits/deposits
 - Cannot obtain perfect closure → residual corrections
 - Spin correlations for simulated taus ignored
- Less complex procedure (re-scaling, not replacing) also in use in ATLAS (TT)
 - Trade complexity for accuracy

Calorimeter deposits before and after removing muon deposits

Embedding - achievements

 Better modelling of kinematic distributions with embedded samples than simulation

Helps reduce some uncertainties

Simplified procedure provides a control region in data

 Even better modelling (smaller uncertainties?) → more work needed!

Uncertainty	$\sigma(\mu_H)$	$\sigma(\mu_{ m VBF})$
Total statistical uncertainty	+1.3 - 1.3	+1.6 - 1.5
Data statistical uncertainty	+0.6 - 0.6	+0.9 - 0.9
Nonresonant background	+1.0 - 1.0	+1.2 - 1.2
Z + jets normalization	+0.5 - 0.5	+0.5 - 0.5
Total systematic uncertainty	+0.6 - 0.4	+0.6 - 0.5
Higgs boson modeling	+0.3 - 0.1	+0.2 - 0.1
JES/JER	+0.3 - 0.2	+0.4 - 0.2
b-tagging (including trigger)	+0.2 - 0.1	+0.2 - 0.1
Other experimental uncertainty	+0.4 - 0.3	+0.4 - 0.4
Total	+1.4 - 1.3	+1.7 - 1.6

Phys. Rev. D98 052003 (2018)

VBF H→bb analysis with 2016 data - Z+jets normalization uncertainty significant. Removed thanks to embedding (trade: 20% closure uncertainty)

Signal modelling

Underlying event & parton shower

ATLAS-CONF-2020-026

 Significant component of the theoretical uncertainty in several measurements, e.g. H→γγ

Several ways in use to estimate these:

 Difference between two showering/hadronization programs

 Difference between a main tune and alternative tune, using the same showering/hadronization program

In this case: ATLAS: PY8 vs Herwig7, CMS:
 PY8 tune variation

	ggF + bbH	VBF	WH	ZH	$t\bar{t}H + tH$
Uncertainty source	$\Delta\sigma$ [%]				
Underlying Event and Parton Shower (UEPS)	± 2.3	± 10	$<\pm1$	± 9.6	± 3.5
Modeling of Heavy Flavor Jets in non-ttH Processes	< ±1	$< \pm 1$	$< \pm 1$	< ±1	±1.3
Higher-Order QCD Terms (QCD)	± 1.6	$<\pm 1$	$< \pm 1$	± 1.9	$<\pm 1$
Parton Distribution Function and α_S Scale (PDF+ α_S)	$<\pm 1$	± 1.1	$<\pm 1$	± 1.9	$<\pm1$
Photon Energy Resolution (PER)	± 2.9	± 2.4	± 2.0	± 1.3	± 4.9
Photon Energy Scale (PES)	$<\pm1$	$<\pm 1$	$<\pm 1$	± 3.4	± 2.2
$ m Jet/\it E_{ m T}^{miss}$	± 1.6	± 5.5	± 1.2	± 4.0	± 3.0
Photon Efficiency	± 2.5	± 2.3	± 2.4	± 1.4	± 2.4
Background Modeling	± 4.1	± 4.7	± 2.8	± 18	± 2.4
Flavor Tagging	$<\pm1$	$<\pm1$	$<\pm 1$	$<\pm 1$	$<\pm 1$
Leptons	$<\pm1$	$<\pm 1$	$<\pm 1$	$<\pm 1$	$<\pm1$
Pileup	± 1.8	± 2.7	± 2.1	± 3.8	± 1.1
Luminosity and Trigger	± 2.1	± 2.1	± 2.3	± 1.1	± 2.3
Higgs Boson Mass	$<\pm1$	$<\pm 1$	$<\pm 1$	± 3.7	± 1.9

Underlying event & parton shower

 $H \rightarrow \gamma \gamma$

ATLAS-CONF-2020-026

- This uncertainty is particularly large for VBF
- Leads to large theory uncertainties for VBF STXS measurements
 - For now, statistical uncertainty dominates
- Consolidating the estimation of these effects would be beneficial

	STX	S bin		SM prediction	Result	Stat. unc.	Sys	st. unc. [pb]
Process	$m_{jj}~[{\rm GeV}]$	$p_{\mathrm{T}}(H)~[\mathrm{GeV}]$	$N_{\rm jets}$	[pb]	[pb]	[pb]	Th. sig.	Th. bkg.	Exp.
H(b)	[0, 350] [♠]	[60, 120]	≥ 1	0.39 ± 0.06	0.17 ± 0.39	±0.22	± 0.06	± 0.15	± 0.29
Z(o qq)H		[120, 200]	= 1	$0.047 \pm\ 0.011$	0.018 ± 0.030	± 0.018	± 0.004	± 0.004	± 0.019
)Z :	[0, 350]	[120, 200]	≥ 2	$0.059 \pm\ 0.020$	0.036 ± 0.039	± 0.027	± 0.009	± 0.009	± 0.025
+ 66		[200, 300]	≥ 0	$0.030 \pm\ 0.009$	0.031 ± 0.011	±0.009	± 0.003	± 0.001	± 0.006
+		$[300, \infty[$	≥ 0	$0.008 \pm\ 0.003$	0.009 ± 0.004	± 0.003	± 0.001	± 0.000	± 0.001
7.8% T	$[350, \infty[$	[0, 200]	≥ 2	$0.055 \pm\ 0.013$	$0.14\ \pm0.11$	± 0.05	± 0.06	± 0.01	± 0.07
EWK	[60, 120]		≥ 2	0.033 ± 0.001	0.031 ± 0.020	±0.017	± 0.003	± 0.001	± 0.010
EWK	$[350, \infty[$		≥ 2	$0.090 \pm\ 0.002$	0.071 ± 0.017	± 0.014	± 0.010	± 0.002	± 0.006
$t\overline{t}H$				0.031 ± 0.003	0.047 ± 0.046	±0.032	± 0.011	± 0.027	± 0.018

STXS uncertainties

- Measuring STXS requires updated uncertainty model compared with inclusive measurements
- Two types of uncertainties
 - Between STXS bins
 - Not a measurement uncertainty when measuring cross sections
 - Enters when merging bins
 - **■** Enters for interpretations (μ , κ , EFT)
 - Within STXS bins
 - Accounts for differences in acceptance

ATLAS-PHYS-PUB-2018-035

STXS uncertainties between bins

- Generally based on scale/pdf variations with uncertainties acting across bin boundary
 - E.g. change in cross section above the boundary when applying variations → uncertainty
 - Uncertainty acts across boundary (relative)
 - Difficulty in certain cases
- Important to agree on values of these →
 e.g. re-interpreting
 measurements/comparing interpretations
- Common scheme being completed in LHC Higgs WG

E.g. cross section 0-75 GeV < 75-150 GeV; migration across 75 GeV bin boundary can lead to a very large uncertainty in the first bin:

25% uncertainty above the 75 GeV boundary \rightarrow 100% uncertainty below.

STXS uncertainties within bins

- Multiple possible approaches:
- Additional bin boundaries
 - Same approach as for between-bin uncertainties
 - Centralised calculation possible
 - Only captures acceptance effect across (conveniently placed) boundaries
- Within-STXS bin scale variations
 - Analysts ensure inclusive STXS bin cross section remains invariant
 - Does not necessarily encapsulate all relevant effects
- These uncertainties should be small
 - Does not mean "negligible"!

Phase space modelling - Higgs pT

Modelling of Higgs boson pT spectrum particularly important for analyses looking at the boosted regime HJ-MiNLO/

Example of where recent progress has been

incorporated in the analyses!

POWHEG 1J However, large theory/modelling pT reweight systematics in the ggH high pT spectrum remain → dwarfed by the statistical uncertainty in highly boosted analyses...

Uncertainty Contribution	$p_{\mathrm{T}}^{H} > 450 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{H} > 1 \; \mathrm{TeV}$
Total	3.3	31
Statistical	2.8	30
Jet Systematics	1.2	7
Modeling and Theory Systs.	1.0	1
Flavor Tagging Systs. Total Systematics	0.5 1.7	8

		2016	2017	2018	Combined	
	Expected µZ	$1.00^{+0.38}_{-0.28} \ 0.86^{+0.32}_{-0.24}$	$1.00^{+0.42}_{-0.29}$	$1.00^{+0.43}_{-0.29}$	$1.00^{+0.23}_{-0.19} \ 1.01^{+0.24}_{-0.20}$	
	Observed μ_Z	$0.86^{+0.32}_{-0.24}$	$1.11^{+0.48}_{-0.33}$	$0.91^{+0.37}_{-0.26}$	$1.01^{+0.24}_{-0.20}$	
	HJ-MINLO		0.00			
	Expected $\mu_{\rm H}$	$1.0^{+3.3}_{-3.5}$ $7.9^{+3.4}_{-3.2}$	1.0 ± 2.5	$1.0^{+2.3}_{-2.4}$	1.0 ± 1.4	
	Observed µ _H	$7.9^{+3.4}_{-3.2}$	$4.8^{+2.6}_{-2.5}$	1.7 ± 2.3	$3.7^{+1.6}_{-1.5}$	
	Expected H significance ($\mu_H = 1$)	0.3σ	0.4σ	0.4σ	0.7σ	
/ '	Observed II significance	2.40	1.90	0.70	2.50	
	Expected UL $\mu_{\rm H}$ ($\mu_{\rm H}=0$)	< 6.8	< 5.0	< 4.7	< 2.9	
	Observed UL $\mu_{ m H}$	< 8.0	< 4.8	< 1.7	< 3.7	
	Ref.[23] H p _T spectrum					
	Expected $\mu_{\rm H}$	1.0 ± 1.5	$1.0^{+1.1}_{-1.0}$	$1.0^{+1.1}_{-1.0}$	$1.0^{+0.7}_{-0.6}$ $1.9^{+0.9}$	
	Observed 1/1	$4.0^{+1.9}_{-1.0}$	2 2+1.4	11 + 11	1 9 + 0.9	
J. **	Expected H significance ($\mu_{\rm H}=1$)	0.7σ	0.9σ	1.0σ	1.7σ	l
,	Observed H significance	2.6 <i>o</i>	1.8σ	1.1σ	2.9σ	'
	Expected UL $\mu_{\rm H}$ ($\mu_{\rm H}=0$)	< 3.4	< 2.4	< 2.3	< 1.4	
	Observed UL $\mu_{\rm H}$	< 4.0	< 2.2	<1.1	< 1.9	
				137	fb ⁻¹ (13 TeV)	

Phase space modelling - Higgs pT

 ... but not necessarily in less boosted phase spaces - e.g. signal strength measurement ggH+2jet / high pT in H→ττ

 In H→WW STXS cross section measurements also a more important

component at high pT

than in other bins

Parameter value

CMS-PAS-HIG-19-010

Summary

- Modelling and associated uncertainties are a major topic when going for precision measurements or measurements of low S/B processes
- Large field of analysis techniques to use data more and rely less on MC predictions
- Still, need a lot of help from our theory / MC generators colleagues
 - Simulations of complex final states (ttbb, W/Z+hf...)
 - Simulations of difficult phase space (Higgs VBF, high pT)
 - Parton shower uncertainties also a concern
 - ⇒ We want N3LO accuracy for all processes, at the speed of LO generators!

Backup

VHbb uncertainties

Source of un	VH	$\sigma_{\mu} \ \ WH$	ZH		
Total		0.177	0.260	0.240	
Statistical		0.177 0.115	0.200	0.240 0.171	
Systematic		0.113 0.134	0.182	0.171 0.168	
		0.134	0.160	0.108	
Statistical u	ncertainties				
Data statisti	cal	0.108	0.171	0.157	
$t\bar{t} e\mu \text{ control}$	region	0.014	0.003	0.026	
Floating nor	malisations	0.034	0.061	0.045	
Experimenta	l uncertainties				
Jets		0.043	0.050	0.057	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.015	0.045	0.013	
Leptons		0.004	0.015	0.005	
1	b-jets	0.045	0.025	0.064	
b-tagging	c-jets	0.035	0.068	0.010	
	light-flavour jets	0.009	0.004	0.014	
Pile-up		0.003	0.002	0.007	
Luminosity		0.016	0.016	0.016	
Theoretical and modelling uncertainties					
Signal		0.072	0.060	0.107	
		0.032	0.013		
	Z + jets			0.059	
W + jets		0.040	0.079	0.009	
$t\bar{t}$,	0.021	0.046	0.029	
Single top qu	0.019	0.048	0.015		
Diboson	0.033	0.033	0.039		
Multi-jet		0.005	0.017	0.005	
MC statistic	al	0.031	0.055	0.038	

