

Monte Carlo modelling of signals and backgrounds

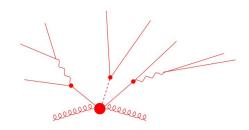
Frank Siegert

Higgs2021 18-22 October 2021

- A parton-shower Monte Carlo is not a fixed-order prediction
 - It is much more powerful!
 - And at the same time much more ambiguous!

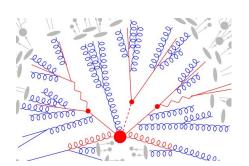
Ambiguities = Uncertainties

(and in addition there can be bugs of course)

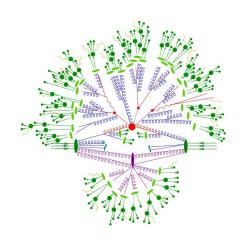

Let's review them briefly ...

- A parton-shower Monte Carlo is not a fixed-order prediction
 - It is much more powerful!
 - And at the same time much more ambiguous!
- Typical sources of trouble ambiguities:

- A parton-shower Monte Carlo is not a fixed-order prediction
 - It is much more powerful!
 - And at the same time much more ambiguous!
- Typical sources of trouble ambiguities:
 - Hard scattering
 - » Limited perturbative accuracy
 - \Rightarrow ambiguity in scale and PDF choices
 - » Factorised decays and narrow-width approximation
 - Spin correlations between production and decay MEs in the chain
 - \Rightarrow ambiguity in polarisation treatment
 - o particularly tricky for tau decays, as they can be hadronic!
 - Diagram overlap (e.g. tt and tWb)
 - \Rightarrow ambiguity in overlap removal
 - » NLO EW corrections
 - \Rightarrow ambiguity in combination between NLO QCD and NLO EW
 - » Multi-leg merging of ME & PS
 - \Rightarrow ambiguity in transition



- A parton-shower Monte Carlo is not a fixed-order prediction
 - It is much more powerful!
 - And at the same time much more ambiguous!
- Typical sources of trouble ambiguities:
 - Parton shower: QCD corrections with three major ambiguities
 - Functional form of splitting kernels (approximation of real-emission MEs)
 - \Rightarrow ambiguity which (finite) pieces to keep
 - Kinematics recoil
 (how to construct 1→2 splittings with m=0 away from collinear limit)
 - ⇒ ambiguity where to distribute recoil for momentum conservation
 - Evolution variable (direction in which logs are resummed)
 - \Rightarrow ambiguity what "from hard to soft" means exactly


Additionally many ambiguities for treatment of quark masses in the above!

- A parton-shower Monte Carlo is not a fixed-order prediction
 - It is much more powerful!
 - And at the same time much more ambiguous!
- Typical sources of trouble ambiguities:
 - Hadronisation: Soft QCD modelling without "first principles"
 - » B-hadron production from partons
 - \Rightarrow ambiguity of flavours formed (e.g. meson or baryon, B* or B, ...)
 - Hadron decays: Effective field theories for heavy-flavour decays
 - » B-hadron decays
 - ⇒ ambiguity of decay matrix elements (form factor models)

- A parton-shower Monte Carlo is not a fixed-order prediction
 - It is much more powerful!
 - And at the same time much more ambiguous!
- Typical sources of trouble ambiguities:

Let's look at recent developments for some of the modelling issues from Adinda+Nicolas ...

- Background modelling
- Signal modelling
- Statistics and practicalness

ATLAS: Select function, and estimate maxin bias 'spurious signal'

- Requires vast amounts of MC events
- Limitation for high luminosity

tt modelling

- Good modelling of bulk of phase space by th after tuning
 - Though sizable discrepancies remain
- Difficulty: uncertainties in tails / corners of ph
 - Not easy to get enough MC statistics:

 filtering / slicing strategies

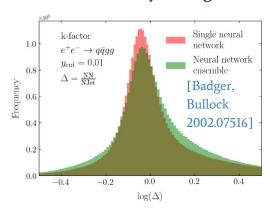
W/Z+bb largest bkgs in VHbb search
Difficulty: generate enough MC events in
relevant phase space (high pT(V)), filtered
for W/Z+hf

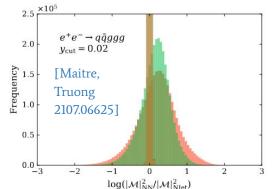
Statistics and practicalness:

uala

Even if it does - would need very large samples to avoid large MC statistical uncertainties

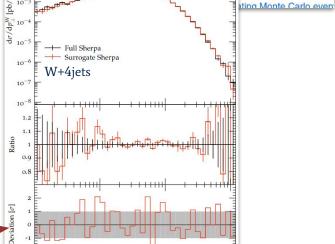
Hybrid solution: Embedding


Countless CPU hours required for MC generation Filters (in)efficiency, spread of MC weights


MC stat noise in uncertainty evaluation smoothed by use of ML techniques for n-dim reweighting

Fast: Machine learning for matrix elements

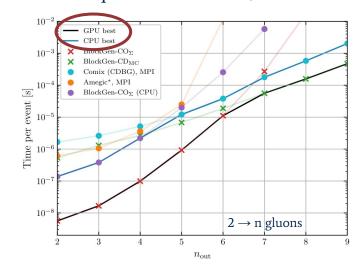
- Boom in ML techniques has also met the Monte Carlo landscape [review]
- Most relevant in the context of efficiency: Matrix elements!
 - Many surrogate models on the market → fast, but how accurate?


- Main question: How to embed them faithfully into Monte Carlo event generators?
 - Novel unweighting based on surrogates: faithful! [Danziger, Janßen, Schumann, FS 2109.11964]

pW [GeV]

- Using neural networks for effici
- (Machine) Learning Amplitudes
- \$\textsf{Xsec}\$: the cross-section
- Matrix Element Regression with
- Unveiling the pole structure of structure
- · Model independent analysis of
- Optimising simulations for diphe

isation-aware Matrix ele

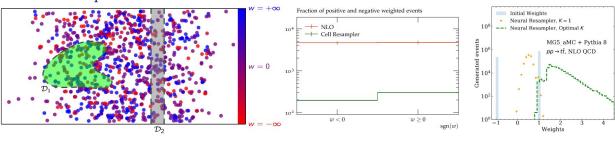


June 2021: The month of matrix elements on GPUs:

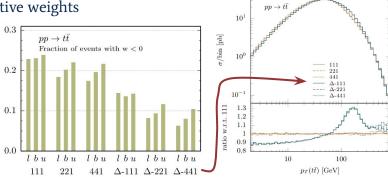
Sherpa/BlockGen [Bothmann et al 2106.06507]

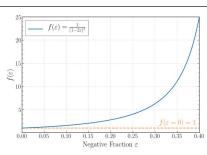
- Automated ME construction with Berends-Giele recursion
- Cross-platform for GPU/CPU (Kokkos)

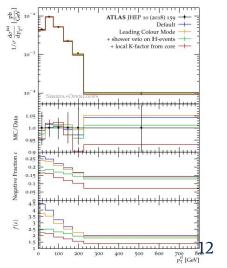
MadGraph5_aMC


- MadFlow [Carrazza et al 2106.10279]
 - Cross-platform (TensorFlow)
 framework for GPU MEs
- ► MG4GPU [Valassi et al 2106.12631]
 - Converts process code from Fortran to GPU, aiming for automation
- Phase space with Rambo@GPU

Process	MadFlow CPU	MadFlow GPU	MG5_aMC
$gg o t ar{t}$	$9.86 \; \mu { m s}$	$1.56~\mu \mathrm{s}$	$20.21 \; \mu { m s}$
$pp \to t\bar{t}$	$14.99 \ \mu s$	$2.20~\mu \mathrm{s}$	$45.74~\mu { m s}$
$pp o t \bar t g$	$57.84 \ \mu s$	$7.54~\mu \mathrm{s}$	$93.23 \ \mu s$
$pp o t \bar t g g$	$559.67 \ \mu s$	$121.05 \ \mu s$	$793.92 \ \mu s$

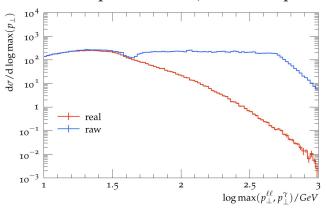

Favourable: Negative weight reduction


- Fraction ε of negative weights reduces sample size by factor $(1-2\varepsilon)^2$
- Two recent directions of improvements:
 - resampling methods [Andersen et al 2005.09375, 2109.07851], [Nachman et al 2007.11586]
 - » a posteriori combination of "close" events



• event generator improvements [Frederix et al 2002.12716], [Danziger et al 2110.xxxxx]

- a priori reduction of negative weights
 during event generation
- modification of NLO+PS matching or multi-leg merging
- » sometimes also affect physical distributions


Filtered: Phase space biasing

- Phase space biasing
 - Experimental analyses often use sliced event samples to populate rare phase space
 - Slicing not always practical:
 - » Selection at hadron level inefficient and slow
 - » Migrations from low- p_T to high- p_T due to shower/UE/had \rightarrow spikes due to low luminosity in low- p_T slices
 - » Non-continuous stat. unc. at slice boundaries
 - Alternative starting to be used/explored:

Continuos phase-space biasing

- » Effectively modify Monte Carlo integrand
- » Correct event weight for real distribution after unweighting!
- Heavy flavour filtering remains challenging
 - LCG workflows adapted to produce filtered evgen samples slightly more efficiently
 - » e.g. V+b, V+c, V+light from same evgen stream
 - HF Fusing (\rightarrow later) could mitigate this (at least for b) due to separate "direct" component
 - » "fragmentation" component still needs filtering/enhancement

Example: biased lly with Sherpa

Textbook example: ttbb, for ttHbb • ttbb dominant bkg and low S/B • Complex process to model by MC • Very large theory uncertainty • Cross-section well constrained by MC profiling, measured ~1.3x

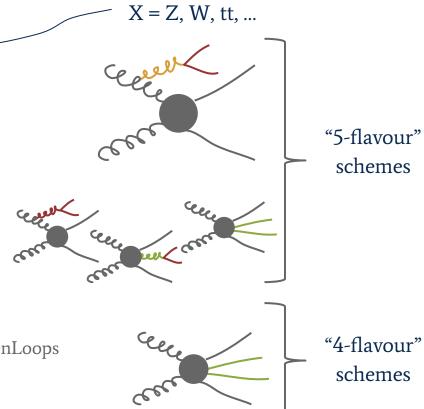
VHbb: W/Z+hf backgrounds

• W/Z+bb largest bkgs in VHbb search

Background modelling:

- Heavy Flavour
- ► tt+V
- Embedding

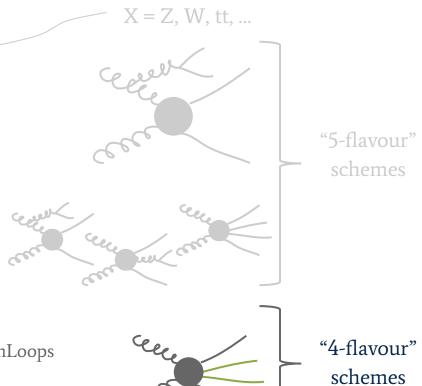
Resonant backgrounds - embedding


• E.g. Z boson decays in fermionic channels

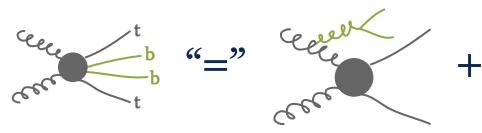
Heavy-flavour associated final states

Traditional approaches for X+b(b) MC predictions:

- "Inclusive" NLO+PS sample with
 HF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}
- Multi-leg merged sample with HF from higher-order MEs (hard b's) or parton shower g→bb (soft/collinear b's)
 - e.g. MG5_aMC+Pythia, Sherpa+OpenLoops
- NLO+PS Xbb using matrix elements with massive b-quarks
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

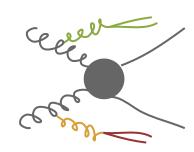


Heavy-flavour associated final states


Traditional approaches for X+b(b) MC predictions:

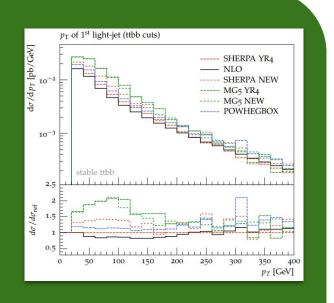
- "Inclusive" NLO+PS sample withHF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}
- Multi-leg merged sample with HF
 from higher-order MEs (hard b's)
 or parton shower g→bb (soft/collinear b's)
 - e.g. MG5_aMC+Pythia, Sherpa+OpenLoops
- NLO+PS Xbb using matrix elements with massive b-quarks
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

 \rightarrow 2 \rightarrow 4 NLO QCD matrix elements with massive b-quarks


Final state $g \rightarrow bb$ **dominant**

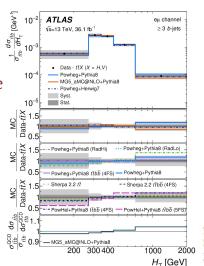
- massive b's \rightarrow no (jet) cuts!
- Collinear g→bb produced in ME
- Matched to parton shower for additional emissions
 - "double-splitting" contribution becomes relevant!

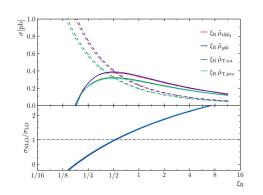
No initial state b in 4FS PDFs

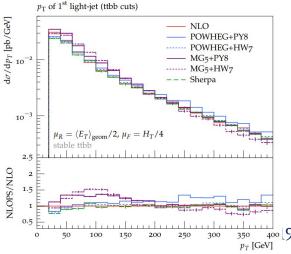

IS g→bb in ME

- History:
 Large discrepancies
 in NLO+PS programs!
 - ► Improve or accept as unc's?
- Arguably one of the most challenging processes for NLO+PS matching
 - Strong interest to understand unc's as prototype for other processes!

becomes.

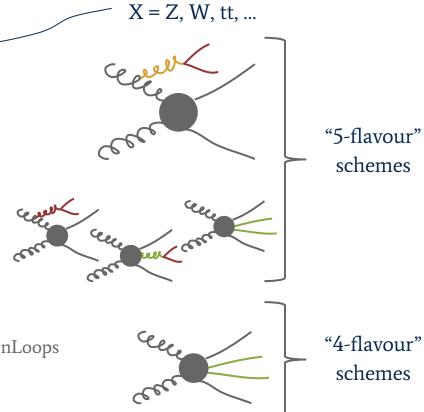

- New inputs:
 - Experimental data?Not yet precise enough to discriminate
 - Fixed-order studies of ttbbj@NLO with OpenLoops2+Sherpa


[Buccioni, Kallweit, Pozzorini, Zoller 1907.13624]


- » Reduced μ_{R} stabilises K-factor
- Application of reduced scale to tuned NLO+PS comparisons

[Garzelli, Jezo, Kardos, Pozzorini, Reuschle, FS, Zaro, ...]

- Improved agreement between NLO+PS tools
- Still sizable O(40%) differences in N_{2b} region \rightarrow origin?
- Aim within ttH/tH subgroup:
 - Final recommendation at LHCHWG General Meeting (Dec)
 - WG note in preparation



Heavy-flavour associated final states

Traditional approaches for X+b(b) MC predictions:

- "Inclusive" NLO+PS sample with
 HF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}
- Multi-leg merged sample with HF from higher-order MEs (hard b's) or parton shower g→bb (soft/collinear b's)
 - e.g. MG5_aMC+Pythia, Sherpa+OpenLoops
- NLO+PS Xbb using matrix elements with massive b-quarks
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

Heavy-flavour associated final states

Traditional approaches for X+b(b) MC predictions:

- "Inclusive" NLO+PS sample withHF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}

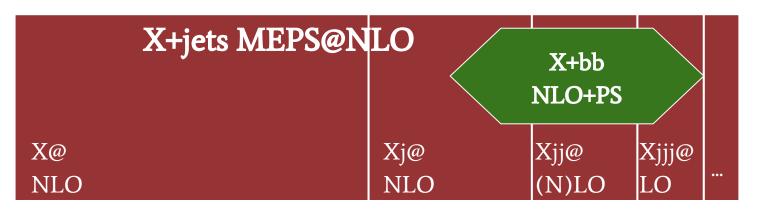
Multi-leg merged sample with HF from higher-order MEs (hard b's)
or parton shower g→bb (soft/colling)

or **parton shower g \rightarrow bb** (soft/collinear b's)

Combining 4-flavour X+bb

and 5-flavour X+jets?

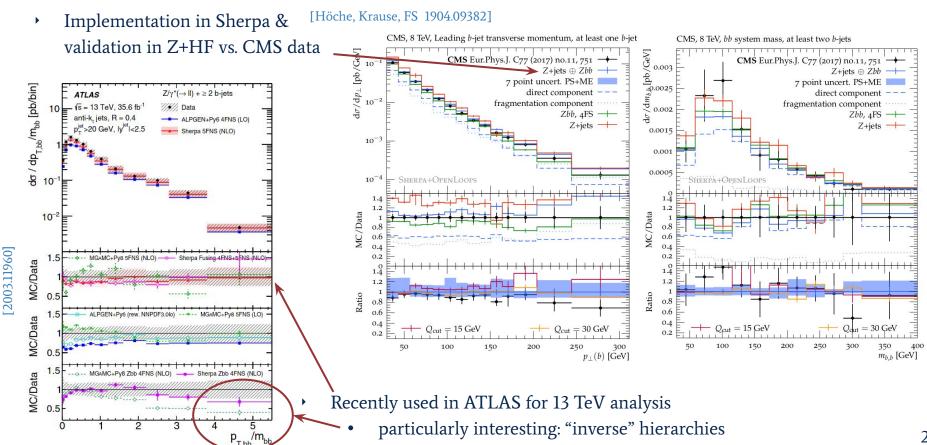
X = Z, W, tt, ...


"5-flavour"
schemes

"4-flavour" schemes

Fusing X+bb and X+jets in the Sherpa MC

aka "Multi-jet merging in a variable flavour number scheme"

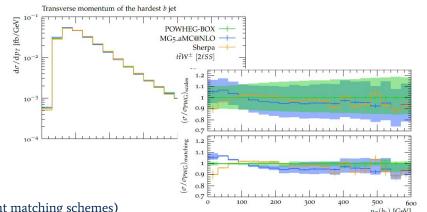

Three main ingredients:

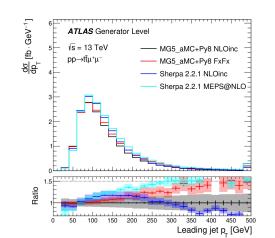
- 1. Interpreting X+bb as merged contribution
- 2. Overlap removal
- 3. Matching 4F/5F in PDFs and $\alpha_{\rm s}$

Can be applied for LO and NLO merging!

Validation for Z+HF production

tt+V generator comparison

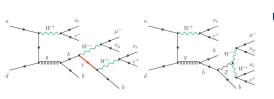

- First ttV implementation in PowhegBox
 + comparison to MG5_aMC@NLO and Sherpa
 [Febres Cordero, Kraus, Reina 2101.11808]
 - NLO+PS with factorised decays and LO spin correlations
 - Generally good agreement within perturbative/matching uncertainties
 - Differences mainly at low p_T (as expected from different matching schemes)

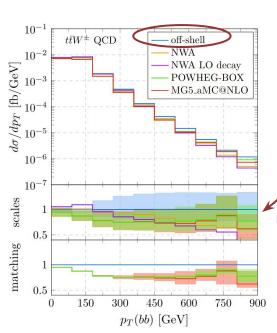


- Description by MC complex
- Significant differences between generators
 - NLO+PS limited in predictivity

[ATL-PHYS-PUB-2020-024]

- High scales in ttW \rightarrow additional hard jet production
- NLO multi-jet-merged calculations predict significantly harder spectra than NLO+PS


tt+V: non-resonant & EW corrections

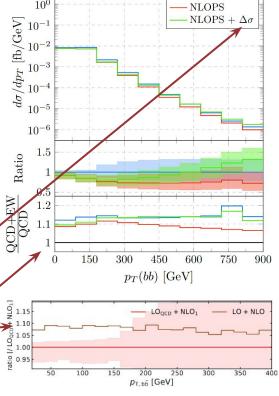

 10^{1}

 10^{0}

 $t\bar{t}W^{\pm}$ QCD+EW

off-shell

Offshell contributions in realistic multi-lepton signatures

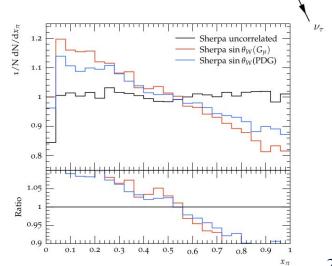

[Denner, Pelliccioli 2102.03246] [Bevilacqua et al 2109.15181]

- Include single- or non-resonant diagrams
- Effects visible in tails of distributions for 3-lepton signature
- No exclusive NLO+PS generator available → Proposal for additive combination at distribution level:

$$\frac{d\sigma^{\rm th}}{dX} = \frac{d\sigma^{\rm NLO+PS}}{dX} + \frac{d\Delta\sigma_{\rm off-shell}}{dX} \;, \quad {\rm with} \quad \frac{d\Delta\sigma_{\rm off-shell}}{dX} = \frac{d\sigma^{\rm NLO}_{\rm off-shell}}{dX} - \frac{d\sigma^{\rm NLO}_{\rm NWA}}{dX} \; . \label{eq:delta_theta}$$

Also relevant for full prediction: subleading/NLO EW at ~10% level

Partially available (for onshell ttV) in MCs through EWvirt approximation



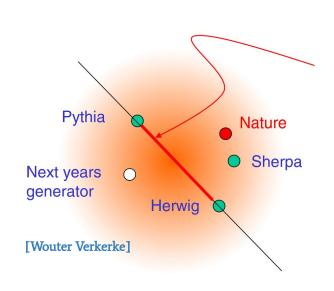
- Normally not an event-generator modelling topic!
 - e.g. $Z(\rightarrow bb)$ +jets as bkg for VBF $H\rightarrow bb$: embedding simulated b-jets in $Z(\rightarrow \mu\mu)$ +jets data events ~independent from modelling
- Potentially more tricky: Embedding taus into $Z(\rightarrow \mu\mu)$ +jets for $Z(\rightarrow \tau\tau)$
 - Problem: Taus decay and their spins are correlated through production from Z!
 - Correcting for spin correlations after embedding?
 E.g. reweighting based on 1D(?) double-ratio from MC?

$$w(x_{\pi}) = \frac{\mathrm{d}\sigma^{\mathrm{correlated}}}{\mathrm{d}x_{\pi}} / \frac{\mathrm{d}\sigma^{\mathrm{uncorrelated}}}{\mathrm{d}x_{\pi}}$$

- » What about other variables, e.g. $m_{\pi\pi}$?
- Careful: Depends on interplay with NLO EW corrections and choice of EW scheme!
 - » New $\sin^2\theta_{eff}$ scheme [Chiesa, Piccinini, Vicini 1906.11569] recently available in Powheg, Sherpa+OpenLoops \rightarrow NLO EW corrections and PDG value of $\sin^2\theta$

Underlying event & parton show

 This uncertainty is particularly large for VBF Consolidating the estimation of these effects would be beneficial

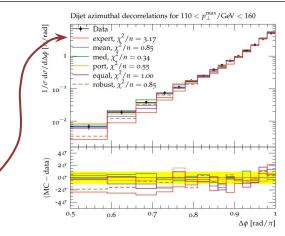

Signal modelling:

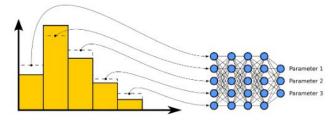
- Non-perturbative uncertainties
- Tuning
- → VBF-like configurations
 - → Simon's talk

Underlying event & parton show	ver
	Uncertainty source
	Underlying Event and Parton Shower (UEPS)

Non-perturbative uncertainties

The problem child: 2-point uncertainties


- Particularly problematic in likelihood fits with constraints
- Traditionally even worse: "Pythia" vs. "Herwig"
 - not just one, but many 2-point unc's in one
- Now (slightly) more controlled/separated
 - parton shower → better use parametric variations [Simon's talk]
 - hadronisation variations still 2-point, but factorised:
 Cluster model vs. String model within same generator
 - matching/merging variations separately
 [e.g. ATL-PHYS-PUB-2020-023]
- New tools can help improve 2-point variations:
 - Tuning
 - ML parametrisation of variations

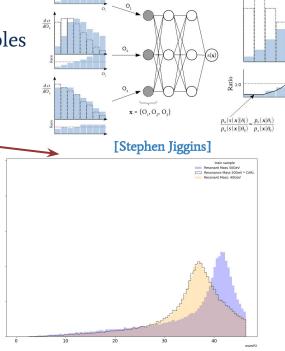


New tools for Monte Carlo tuning

Several recent Monte Carlo tuning developments

- Classical interpolation and minimization:
 "Apprentice" as successor of "Professor" [2103.05748]
- Extension: Automatic observable weights "BROOD" [2103.05751]
 - Less time, less subjective bias
 - Beats expert hand-tuning!
- Replace polynomial interpolation with NN regression:
 "MCNNTUNES" [2010.02213]
 - Adds option of direct (inverse) learning of parameters instead of interpolation
 - Not very robust/usable yet, but interesting idea
- Huge amount of new precise data for jet physics
 - → Open question: How well does tuning work if models do not cover those data?





ML techniques for NP uncertainties

- On-the-fly weights are the standard for perturbative uncertainties (scales, PDFs) now!
 - Can we achieve something similar for NP uncertainties?
 - Avoid duplicating simulated MC datasets \rightarrow CPU and disk saving
 - Statistical fluctuations better under control
- ML techniques to learn differences between two MC samples

- Multi-dimensional mapping
 - » ATLAS VHbb analysis [→ last talk]
 - » CARL [1506.02169] ———
 - » Reweighting with BDTs [1608.05806]
- **←** » DCTR [1907.08209]
- Alternative approach:
 Optimal transport [2008.08604]
 to map kinematics onto each other

- Monte Carlo modelling remains key aspect in many analyses
- Modelling improvements from higher perturbative accuracy often come with reduced practicalness
 - Do we need proxy models based on high-precision event generators?
 - » Multi-jet merged LO samples tuned to N(N)LO?
 - » Machine Learning?
 - → Uncertainties?
- Ramp-up of developments addressing limited Monte Carlo statistics
 - HSF Event Generator WG as forum [2004.13687]
 - Includes also many less spectacular but important improvements not mentioned here!

Thanks for your interest!