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One Modelling to rule them all...
»  hard scattering and
jet evolution
» hadronisation and
soft processes
... affecting final states across
almost all Higgs analyses.

Why is Monte Carlo
modelling so tricky?




G Inivewsivir The art (or ambiguities) of constructing a PS MC

DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

Ambiguities = Uncertainties

(and in addition there can be bugs of course)

Let’s review them briefly ...
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G Inivewsivir The art (or ambiguities) of constructing a PS MC

DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of treubte ambiguities:

* Hard scattering
»  Limited perturbative accuracy
= ambiguity in scale and PDF choices
»  Factorised decays and narrow-width approximation
- Spin correlations between production and decay MEs in the chain
= ambiguity in polarisation treatment
©  particularly tricky for tau decays, as they can be hadronic!
- Diagram overlap (e.g. tt and tWb)
= ambiguity in overlap removal
»  NLO EW corrections
= ambiguity in combination between NLO QCD and NLO EW
»  Multi-leg merging of ME & PS
= ambiguity in transition




G Inivewsivir The art (or ambiguities) of constructing a PS MC

DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of trettbte ambiguities:

e Parton shower: QCD corrections with three major ambiguities
»  Functional form of splitting kernels
(approximation of real-emission MEs)
= ambiguity which (finite) pieces to keep
»  Kinematics recoil
talk (how to construct 1—2 splittings with m=0 away from collinear limit)
= ambiguity where to distribute recoil for momentum conservation
»  Evolution variable

Simon’s

(direction in which logs are resummed)
= ambiguity what “from hard to soft” means exactly
Additionally many ambiguities for treatment of quark masses in the abovel!



G Inivewsivir The art (or ambiguities) of constructing a PS MC

DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of trettbte ambiguities:

* Hadronisation: Soft QCD modelling without “first principles”
»  B-hadron production from partons
= ambiguity of flavours formed (e.g. meson or baryon, B* or B, ...)

* Hadron decays: Effective field theories for heavy-flavour decays
»  B-hadron decays
= ambiguity of decay matrix elements (form factor models)




G Inivewsivir The art (or ambiguities) of constructing a PS MC

DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of trettbte ambiguities:

Let’s look at recent developments for some of the
modelling issues from Adinda+Nicolas ...

> Background modelling
> Signal modelling
> Statistics and practicalness
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tt modelling
© Sff[’;dt::ﬁ; e i e mpaee P W/Z+bb largest bkgs in VHbb search ———
= Though sizable discrepancies remain Difficulty: generate enough MC events in
o Difficulty: uncertainties in tails / corners of pt ; '
ATLAS: Select function, and estimate maxin = Not easy to get enough MC statistics: isEAmBivase Spersiia NG, Al
bias ‘spurious signal’ e filtering / slicing strategies for W/Z+hf

m  Requires vast amounts of MC events
m  Limitation for high luminosity

Statistics and practicalness:
THE

FFasTr

AND THE

ILTERED, FAITHFUL & FAVOURABLE

e Countless CPU hours required for MC generation

Even if it does - would need very large samples to avoid Filters (in)efficiency, spread of MC weights
large MC statistical uncertainties

Huhrid sohution- Emhedding MC stat noise in uncertainty evaluation smoothed

by use of ML techniques for n-dim reweighting
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Fast: Machine learning for matrix elements

Frequency

»  Boom in ML techniques has also met the Monte Carlo landscape [:cview]

»  Most relevant in the context of efficiency: Matrix elements!
* Many surrogate models on the market — fast, but how accurate?
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»  Main question: How to embed them faithfully

109(|M|2NN/]M l%ljet)

into Monte Carlo event generators?

*  Novel unweighting based on surrogates: faithful!

[Danziger, Janflen, Schumann, FS 2109.11964]
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https://github.com/iml-wg/HEPML-LivingReview
https://arxiv.org/pdf/2002.07516.pdf
https://arxiv.org/pdf/2107.06625.pdf
https://arxiv.org/pdf/2109.11964

(U inivewsitar Fast: GPU computing
DRESDEN

»  June 2021: The month of matrix elements on GPUs:

Sherpa/BlockGen [Bothmann et al 2106.06507] MadGraph5_aMC
»  Automated ME construction with »  MadFlow [Carrazzaet al 2106102791
Berends-Giele recursion *  Cross-platform (TensorFlow)
»  Cross-platform for GPU/CPU (Kokkos) framework for GPU MEs
10*2‘/’? . . . — »  MGA4AGPU [valassi et al 2106126311

103

vt | » Converts process code from
¥ BlockGen-CDyi¢ . .
@ Conix (CDBG), MPI o X Fortran to GPU, aiming for
—4| ® Amegic*, MPI .
10 PS B]oclchn-COg (CPU) 2/'/ automation
X
1075 S :

»  Phase space with Rambo@GPU

Time per event [s]

b
10-¢
3

Process | MadFlow CPU adFlow GPU | MG5_aM

1077F

. gg — tt 9.86 us 1.56 us 20.21 ps

pp — tt 14.99 ps 2.20 ps 45.74 ps

107 - E pp — ttg 57.84 us 7.54 us 93.23 us
A éz “;gluonsé | pp — thgg | 550.67 us 121.05 us | 793.92 1

Nout

Particularly important for utilisation of HPC resources! 1


https://arxiv.org/pdf/2106.06507.pdf
https://arxiv.org/pdf/2106.10279.pdf
https://arxiv.org/pdf/2106.12631.pdf
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Favourable: Negative weight reduction

>

>

Fraction ¢ of negative weights reduces sample size by factor (1-2¢)*

Two recent directions of improvements:
* resampling methods [Andersen et al 2005.09375, 2109.078511, [Nachman et al 200711586]

»  aposteriori combination of “close” events
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* event generator improvements [Frederix et al 2002127161, [ Danziger et al 2110.xxxxx]

»

»

»

a priori reduction of negative weights

during event generation
modification of
NLO+PS matching or
multi-leg merging
sometimes also affect
physical distributions
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http://arxiv.org/abs/2005.09375
https://arxiv.org/pdf/2109.07851.pdf
https://arxiv.org/abs/2007.11586
https://arxiv.org/pdf/2002.12716.pdf
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Phase space biasing

* Experimental analyses often use sliced event samples to populate rare phase space

* Slicing not always practical:
»  Selection at hadron level inefficient and slow
»  Migrations from low-p,. to high-p.. due to shower/UE/had

-
— spikes due to low luminosity in low-p,. slices § 103

»  Non-continuous stat. unc. at slice boundaries & 10

* Alternative starting to be used/explored: S
Continuos phase-space biasing s

»  Effectively modify Monte Carlo integrand 10"

»  Correct event weight for real distribution after unweighting! 1

Heavy flavour filtering remains challenging

Example: biased lly with Sherpa

T HHH!‘ T \HHHl T IHHH‘ T \HHH] T IHHH‘ T HIHHl T

i HHHHI \IHHH‘ 111 \IHHH‘ \HIHHl IERTn

[

L5

2 2.5 3
logmax(p!, p7)/GeV

* LCG workflows adapted to produce filtered evgen samples slightly more efficiently

»  eg V+b, V+c, V+light from same evgen stream

* HF Fusing (— later) could mitigate this (at least for b) due to separate “direct” component

»  “fragmentation” component still needs filtering/enhancement

13
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Textbook example: ttbb, for ttHbb
‘ VHbb: W/Z+hf backgrounds

Background modelling:
> Heavy Flavour

>tV
> Embedding
ttH in multilepton final states: ttW/ttZ Resonant backgrounds - embedding

0CMS

14



G Shiversinis Heavy-flavour associated final states

DRESDEN
Traditional approaches for X+b(b) MC predictions: X=2Z, W, tt,..
L —
»  “Inclusive” NLO+PS sample with /

HF production from parton shower g—bb

* eg [Powheg,aMC@NLO}+{Pythia,Herwig} “s_f] .
-flavour
»  Multi-leg merged sample with HF schemes

from higher-order MEs (hard b’s)
or parton shower g—bb (soft/collinear b’s) :;’é
¢ eg MG5_aMC+Pythia, Sherpa+OpenLoops (j::é
»  NLO+PS Xbb using matrix elements with
massive b-quarks

* eg Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops / - “4-flavour”
schemes

—

—
——

15
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>

NLO+PS Xbb using matrix elements with

massive b-quarks
* eg Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

o

e

“4-flavour”
schemes

16



G Inivewsivir Anatomy of 4FS NLO+PS for ttbb
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»  2—4 NLO QCD matrix elements with massive b-quarks

::fé . S “*Kl -

Final state g—bb dominant No initial state b in 4FS PDFs

» massive b’s — no (jet) cuts! » IS g—bb in ME
» collinear g—bb produced in ME

»  Matched to parton shower for

additional emissions /

*  “double-splitting” contribution
becomes relevant!

17
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HiStOI’Y: pr of 1% light-jet (ttbb cuts)

Large discrepancies S=ul s
. 2k Cicg N SHERPA NEW
in NLO+PS programs! =

> Improve or accept as unc’s?

POWHEGBOX

Arguably one of the most
challenging processes for

NLO+PS matching
> Strong interest to
b understand unc’s as
prototype for other processes!

300 350
pr [GeV]
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4FS NLO+PS for ttbb

>

New inputs:
* Experimental data?

Not yet precise enough to discriminate
* Fixed-order studies of ttbbj@NLO

with OpenLoops2+Sherpa
[Buccioni, Kallweit, Pozzorini, Zoller 1907.13624]
»  Reduced u, stabilises K-factor

Application of reduced scale to tuned

NLO+PS comparisons

[Garzelli, Jezo, Kardos, Pozzorini, Reuschle, FS, Zaro, ...]

—
% 10%F ATLAS ey channel
2 V5=13 TeV, 36.1 fb" >3 brjets
8 -

o | T

AT

<10
‘c“
« Data- fIX (X = HV)
1074} —— Powheg+Pythiag
—— MG5_aMC@NLO+Pythia8
-.=: Powheg+Herwig?
Syt
1075F st
ol =15 -
)
28 1
005 1
o i:l.. 1.5}~ - Powheg+Pythia8 (RadHi) - Powhgg_n_vy_lﬁlat_! (RadLo) ]
[kttt
=8
8
0.5 — Powneg:+Pythia8 (7bb (4FS) — Powheg-+Pythia8
o é 1.5F - shepaz2 - - Sherpa 2.2 (Tbb (4FS)
gs o e
S B T e
0.5[ =~ PowHelsPythia8 (fb (4FS) — PowHel+Pythia8 tfbb (5FS]]
k= t
o (W= 1

O |5 1 | —

SR

06: o 0.9} — MG5_aMC@NLO+Pythia8 ) q

200 300400 1000 2000
H. [GeV]

* Improved agreement between NLO+PS tools

o  Still sizable O(40% ) differences in N,, region — origin?

Aim within ttH/tH subgroup:

* Final recommendation at LHCHWG General Meeting (Dec)

* WG note in preparation
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https://arxiv.org/abs/1907.13624

G Shiversinis Heavy-flavour associated final states

DRESDEN
Traditional approaches for X+b(b) MC predictions: X=2Z, W, tt,..
L —
»  “Inclusive” NLO+PS sample with /

HF production from parton shower g—bb

* eg [Powheg,aMC@NLO}+{Pythia,Herwig} “s_f] .
-flavour
»  Multi-leg merged sample with HF schemes

from higher-order MEs (hard b’s)
or parton shower g—bb (soft/collinear b’s) :;’é
¢ eg MG5_aMC+Pythia, Sherpa+OpenLoops (j::é
»  NLO+PS Xbb using matrix elements with
massive b-quarks

* eg Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops / - “4-flavour”
schemes

—

—
——

20



ONVERSITAT Heavy-flavour associated final states
Traditional approaches for X+b(b) MC predictions: X=2, W1t ..
k —
»  “Inclusive” NLO+PS sample with
HF production from parton shower g—bb /
* eg [Powheg,aMC@NLO}+{Pythia,Herwig} “5_f] B
-flavour
schemes
“4-flavour”
schemes

21
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Fusing X+bb and X+jets in the Sherpa MC

aka “Multi-jet merging in a variable flavour number scheme”

Three main ingredients:
Interpreting X+bb as merged contribution

Overlap removal
Matching 4F/5F in PDFs and a,

Can be applied for LO and NLO merging!

22



(Ls) ONNeRsitaT Validation for Z+HF production
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[2003.11960]

> Implementation in Sherpa & [Héche, Krause, FS 1904.09382]

. . . CMS, 8 TeV, Leading b-jet transverse momentum, at least one b-jet CMS, 8 TeV, bb system mass, at least two b-jets
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* particularly interesting: “inverse” hierarchies 23


https://arxiv.org/pdf/2003.11960.pdf
https://arxiv.org/abs/1904.09382

(L) niversivar tt+V generator comparison
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Transverse momentum of the hardest b jet
L L L B L B
POWHEG-BOX —+— 7
MG5.aMC@NLO —+—
Sherpa — 1
W= (2£85] —

10

> First ttV implementation in PowhegBox
+ comparison to MG5_aMC@NLO and Sherpa

[Febres Cordero, Kraus, Reina 2101.11808]
*  NLO+PS with factorised decays

and LO spin correlations

%
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* Generally good agreement 3
within perturbative/matching uncertainties e
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ttW/ttZ leading ones N
o Description by MC complex (%D, [ ATLAS Generator Level
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8 B =
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o~ E
[ATL-PHYS-PUB-2020-024] : J = ]
. . oy . . = i =
» High scales in ttW — additional hard jet production | RSN E
0 1 L I 1 L 1 s
¢ NLO multi-jet-merged calculations predict significantly P S ey
harder spectra than NLO+PS i e — o
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https://arxiv.org/abs/2101.11808
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-024/
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tt+V: non-resonant & EW corrections
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Offshell contributions in realistic

multi-lepton signatures

[Denner, Pelliccioli 2102.03246]
[Bevilacqua et al 2109.15181]

* Include single- or non-resonant diagrams

» Effects visible in tails of distributions for
3-lepton signature

*  No exclusive NLO+PS generator available
— Proposal for additive combination at
distribution level:

NLO+PS

dX

i )
! AAC - shell

dX

AAGf.shell
dX

do
dX

NLO NLO
_ doggaen _ doxwa
dX dX

do ;
= with

Also relevant for full prediction:

subleading/NLO EW at ~10% level
* Partially available (for onshell ttV) in
MCs through EWvirt approximation

W—— — ‘
| tW* QCD+EW | — off-shell
10° ¢ —— NLOPS E
=10t —NLOPS + A |
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https://arxiv.org/abs/2102.03246
https://arxiv.org/pdf/2109.15181.pdf
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Thoughts on embedding

>

4

Normally not an event-generator modelling topic!
e.g. Z(—bb)+jets as bkg for VBF H—bb:

embedding simulated b-jets in Z(—pp)+jets data events ~independent from modelling

Potentially more tricky: Embedding taus into Z(—pp)+jets for Z(—1r)

Problem: Taus decay and their spins are correlated through production from Z!
Correcting for spin correlations after embedding?
E.g. reweighting based on 1D(?) double-ratio from MC?

»

d O.uncorrelated

do.correlated
w(ez) = /

dz . dz .

What about other variables, eg. m_?

1/N dN/dx,

Careful: Depends on interplay with NLO EW corrections

and choice of EW scheme!

»

New sin*0_. scheme [Chiesa, Piccinini, Vicini 190611569]
recently available in Powheg, Sherpa+OpenLoops
— NLO EW corrections and PDG value of sin’0

UL AN R R RN R

— Sherpa uncorrelated —:

— Sherpa sin 0 (G,)

— Sherpa sin 0 (PDG) ]

SRS NN AT SR A
T LI L L L B

I T N SN A
LR RN RN LR R

[

v b b I Ll

0.1

02 03

iy
04 05 o6 07 o8 09

X
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https://arxiv.org/abs/1906.11569
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Underlying event & parton shov

Slgnal modelling:

Non-perturbative
uncertainties
> Tuning
> MBHike
c :

— Simon’s talk

Underlying event & parton shower

27



(L) oniversivar Non-perturbative uncertainties
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The problem child: 2-point uncertainties
> Particularly problematic in likelihood fits with constraints

»  Traditionally even worse: “Pythia” vs. “Herwig”

* not just one, but many 2-point unc’s in one

Pythia o \alure »  Now (slightly) more controlled/separated

@ Sherpa * parton shower — better use parametric variations [Simon’s talk]
Nextyears O

generator * hadronisation variations still 2-point, but factorised:

Herwig Cluster model vs. String model within same generator

* matching/merging variations separately

[Wouter Verkerke]
[e.g. ATL-PHYS-PUB-2020-023]

»  New tools can help improve 2-point variations:
e Tuning
* ML parametrisation of variations

28


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-023/
https://indico.cern.ch/event/305391/contributions/701313/attachments/580270/798898/Verkerke_Statistics_L3.pdf

G Shiversinis New tools for Monte Carlo tuning
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Dijet azimuthal decorrelations for 110 < pT**/GeV < 160

e U L ) B LI B
E expert, 2/n =731y
mean, x~/n = 0.85
med, ;(Z/n =0.34

port, x“/n = 0.55

[ equal, )(Z/n = 100!
_y |~~~ robust, x°/n = 0.85

T
S
S

Several recent Monte Carlo tuning developments

-

»  Classical interpolation and minimization:

1/0 do/dA¢

“Apprentice” as successor of “Professor” 12103057481

»  Extension: Automatic observable weights
“BROOD? 12103.057511

* Less time, less subjective bias

(MC — data)

e Beats expert hand-tuning!

»  Replace polynomial interpolation with NN regression: e
“MCNNTUNES” 12010022131 A 1 =

* Adds option of direct (inverse) learning

of parameters instead of interpolation

* Not very robust/usable yet, but interesting idea

»  Huge amount of new precise data for jet physics

— Open question: How well does tuning work if models do not cover those data?
29


https://arxiv.org/pdf/2103.05748.pdf
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https://arxiv.org/pdf/2010.02213.pdf
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ML techniques for NP uncertainties

Jets per bin (normalized)

»  On-the-fly weights are the standard for perturbative uncertainties (scales, PDFs) now!

Can we achieve something similar for NP uncertainties? .
Avoid duplicating simulated MC datasets — CPU and disk savmg

» ML techniques to learn differences between two MC samples

Statistical fluctuations better under control
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Multi-dimensional mapping

»  ATLAS VHbDb analysis [ last talk]

»  CARL [1506.02169]
»  Reweighting with BDTs [1608.05806]

- »

DCTR [190708209]

Alternative approach:
Optimal transport [2008.08604]

to map kinematics onto each other

Pu(s(x)16) _ p(xI6))
puls(x)l6;)  p,(xl6)

) [Stephen Jiggins]
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https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1608.05806.pdf
https://arxiv.org/pdf/1907.08209.pdf
https://arxiv.org/pdf/2008.08604.pdf
https://indico.cern.ch/event/910089/

VLS Conclusions

DRESDEN

»  Monte Carlo modelling remains key aspect in many analyses

»  Modelling improvements from higher perturbative accuracy

often come with reduced practicalness

* Do we need proxy models based on high-precision event generators?
»  Multi-jet merged LO samples tuned to N(N)LO?
»  Machine Learning?

— Uncertainties?

»  Ramp-up of developments addressing limited Monte Carlo statistics
« HSF Event Generator WG as forum [2004.13687]
* Includes also many less spectacular but important improvements not mentioned here!

Thanks for your interest!


https://arxiv.org/abs/2004.13687

