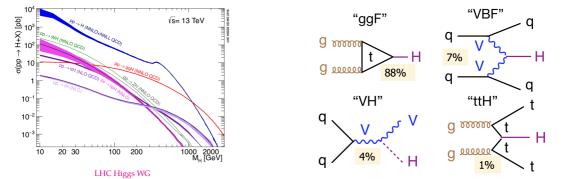
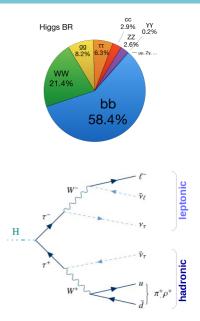
Measurements of Higgs boson production cross sections in the $H \rightarrow \tau \tau$ decay channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

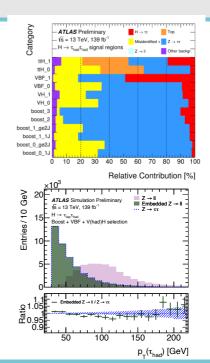
Kristina Mihule on behalf of the ATLAS collaboration


Charles University, Prague

Higgs 2021, October 2021


The ATLAS H production measurement in $H \to \tau \tau$

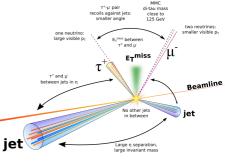
- Aims for precise measurements of the cross section of the Higgs boson production in experimental categories following four production modes:
 - ▶ ggF: a dominant production mode
 - ▶ VBFH: a characteristic event signature, a BDT-based MVA tagger developed
 - $t\bar{t}H$ and VH where top and V decay hadronically: processes are recognized with BDTs
- Measuring Higgs boson production cross sections with the simplified template cross section (STXS) in ggH and VBF production modes: binned in $p_T(H)$, m_{jj} , and N_j


Higgs boson decay to a pair of τ -leptons

- $H \rightarrow \tau \tau$ is the second most frequent Higgs boson decay to fermions: branching ratio is 6.3%
- $H \rightarrow \tau \tau$ analysis measures production cross section and parameters of the $H\tau\tau$ coupling
- The most up-to-date measurements are based on the data collected LHC Run 2 (2015-2018) [ATLAS-CONF-2021-044].
- Various di-tau decay modes are included: $\tau_{\rm h}\tau_{\rm h}$, $\tau_{\rm h}\tau_e$, $\tau_{\rm h}\tau_{\mu}$, $\tau_e\tau_{\mu}$

BACKGROUND ESTIMATION

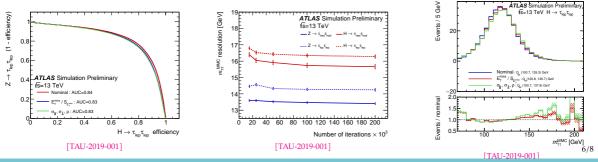
- The irreducible $Z\tau\tau$ background:
 - ► Control regions (CRs) based on object-level embedding (real *Zll* data: light leptons \rightarrow simulated τ 's) \rightarrow validation of MC $Z\tau\tau$ modelling with embedded *Zll*, p_T distribution correction, constraining normalization
 - MC modeling in signal region (SR)
- The events where taus are faked by jets data-driven assessment:
 - Fake factor method ($\tau_{had}\tau_{had}$, $\tau_{had}\tau_l$ where $l = e, \mu$)
 - Matrix element method $(\tau_e \tau_\mu)$
- ► Top events are MC-modeled → normalization constraining, modeling check in CRs
- Other background processes (Zll, di-boson, W+jets,..) – MC simulation



4/8

DI-TAU MASS ESTIMATION: MISSING MASS CALCULATOR

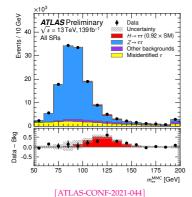
- The invariant mass of the di-tau system is used by the analysis as the final discriminant variable in the determination of the signal
- Reconstruction of the Higgs boson mass (i.e. *m*_{ττ}) is challenging due to the presence of non-detectable neutrinos
- The Missing Mass Calculator (MMC) [1012.4686] assumes neutrinos are the only source of missing transverse energy (MET).
- For each event, kinematically possible configurations (variations of particles four-momenta) of the visible

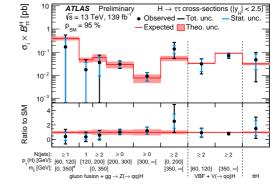

The solution with the highest probability $\mathcal{L} = -\log(\mathcal{P}_{\text{total}}) = -\log(\mathcal{P}(\Delta R_{\text{vis,miss }1,p_{\tau 1}}) \times \mathcal{P}(\Delta R_{\text{vis,miss }2,p_{\tau 2}}) \times \mathcal{P}(\mathcal{E}_{\text{T x,y}}) \times \mathcal{P}(E_{\text{vis. }\tau 1}) \times \mathcal{P}(E_{\text{vis. }\tau 2})) \times \mathcal{P}(m_{\text{miss }1}) \times \mathcal{P}(m_{\text{miss }2})$ is set as a final estimator of m_H .

source

Mass estimator performance

- ▶ The MMC output depends on MET resolution \rightarrow need a good MET proxy
- ► Various options to estimate missing transverse energy resolution were tried: via parametrization on $\sum E_T$, $\Delta \phi_{ll}$, μ and through object-based MET significance [ATLAS-CONF-2018-038]
- ► The number of iterations during the phase space scanning was optimized
- ► Reasonable separation between the signal and background is observed: 80% $Z \rightarrow \tau \tau$ rejection at 80% $gg \rightarrow H \rightarrow \tau \tau$ acceptance
- ► The MMC resolution is about 15-20 GeV.

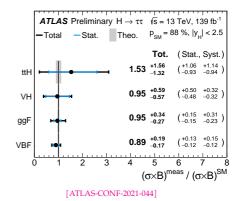

ATLAS-CONF-2021-044]


STATISTICAL ANALYSIS. STXS RESULTS

- The reconstructed $M_{\tau\tau}$ is a discriminant in the final fit, 32 SRs, 6 top CRs, 30 $Z\tau\tau$ CRs
- Systematic uncertainties with the largest impact on $\Delta \sigma / \sigma (pp \rightarrow H \rightarrow \tau \tau)$ are signal theory (8.7%), jet & E_T^{miss} (4.5%), and MC statistical (4.0%) uncertainty
- ► Simultaneous fit with 9 cross-sections in kin. volumes within the STXS framework:

ATLAS-CONF-2021-044

- precision of 24% for VBF $pp \rightarrow H\tau\tau$ in the $m_{jj} > 350$ GeV bin
- ▶ precision within 40% for $gg \rightarrow H \rightarrow \tau \tau$ in the $p_T(H) > 200$ GeV range



[ATLAS-CONF-2021-044]

Summary on SM $pp \to H \to \tau \tau$ measurements

- ► The production cross-section of the $pp \rightarrow H \rightarrow \tau\tau$ process is measured to be 2.94±0.21 (stat)^{+0.37}_{-0.32}(syst) pb
- For the first time, VBF $H \rightarrow \tau \tau$ production is observed with significance of 5.3 and strong constraints
- The observed significance for $gg \rightarrow H \rightarrow \tau \tau$ is 3.9 sigma
- All inclusive and exclusive measurements are consistent with the Standard Model prediction

