Optimally sensitive observables for global EFT fits

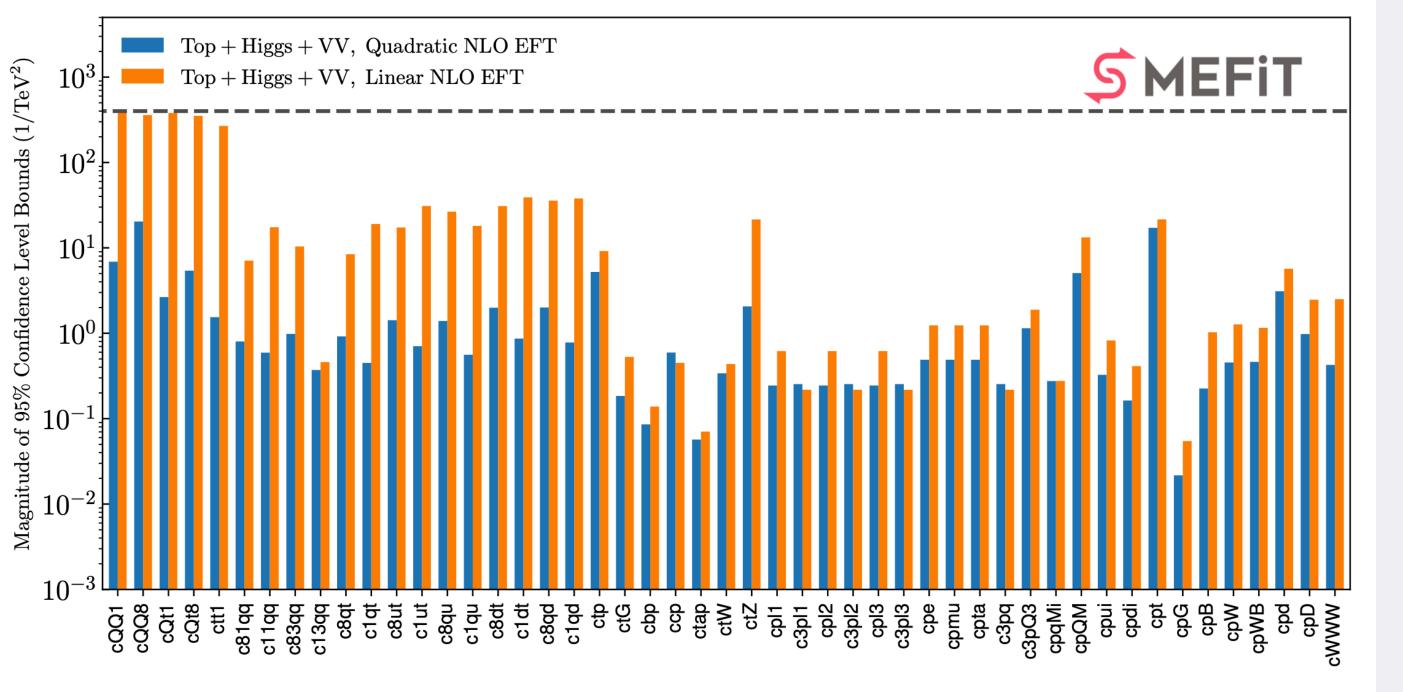
HIGGS 2021 online conference October 19th

Work done in collaboration with R. Gomez Ambrosio, M. Madigan, J. Rojo, V. Sanz

Jaco ter Hoeve

Introduction

- Status of the global EFT program: **Top + Higgs + diboson** data
- Based on traditional unfolded cross section distributions



Can one construct observables specifically designed to constrain EFT operators?

See also the next talk by Ken Mimasu (Fitmaker)!

J.J. Ethier et al. [2105.00006]

Introduction

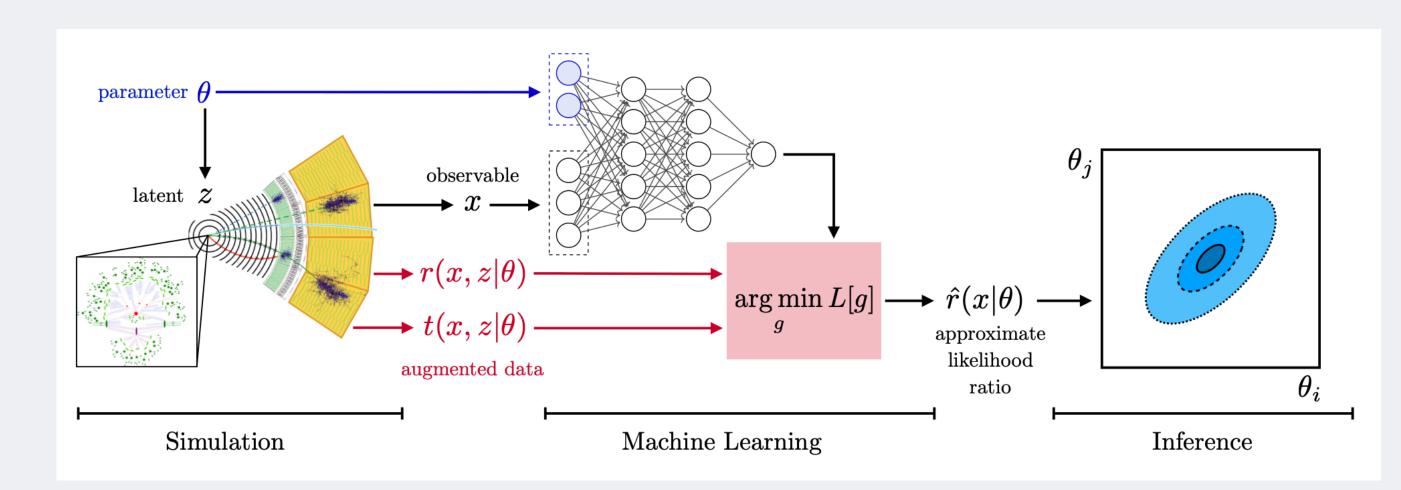
- We lose information in the process of binning
- To what degree can binned analyses achieve statistically optimal bounds? lacksquare
- Even for bins, the precise choice of binning is not clear

Key question: given a collider process, how can one define optimal observables with the highest sensitivity to EFT coefficients?

Goal: develop statistically optimal observables and integrate them into global EFT fits

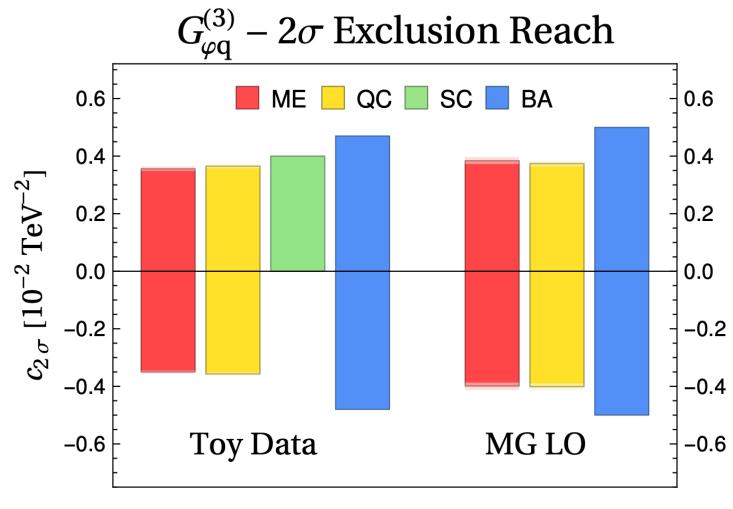
Related work

- The **likelihood** (ratio) as central object
- Matrix Element Method (MEM): transfer functions \bullet
- Parameterise the likelihood ratio with **Neural Networks**
- Current studies are limited to a small number of EFT \bullet coefficients



J. Brehmer, K. Cranmer [2010.06439]

S. Chen, A. Glioti, G. Panico, A. Wulzer [2007.10356]



Finding optimal observables

two simple hypotheses H_0 and H_1 is the (log) likelihood ratio:

 $t_{c}(D)$

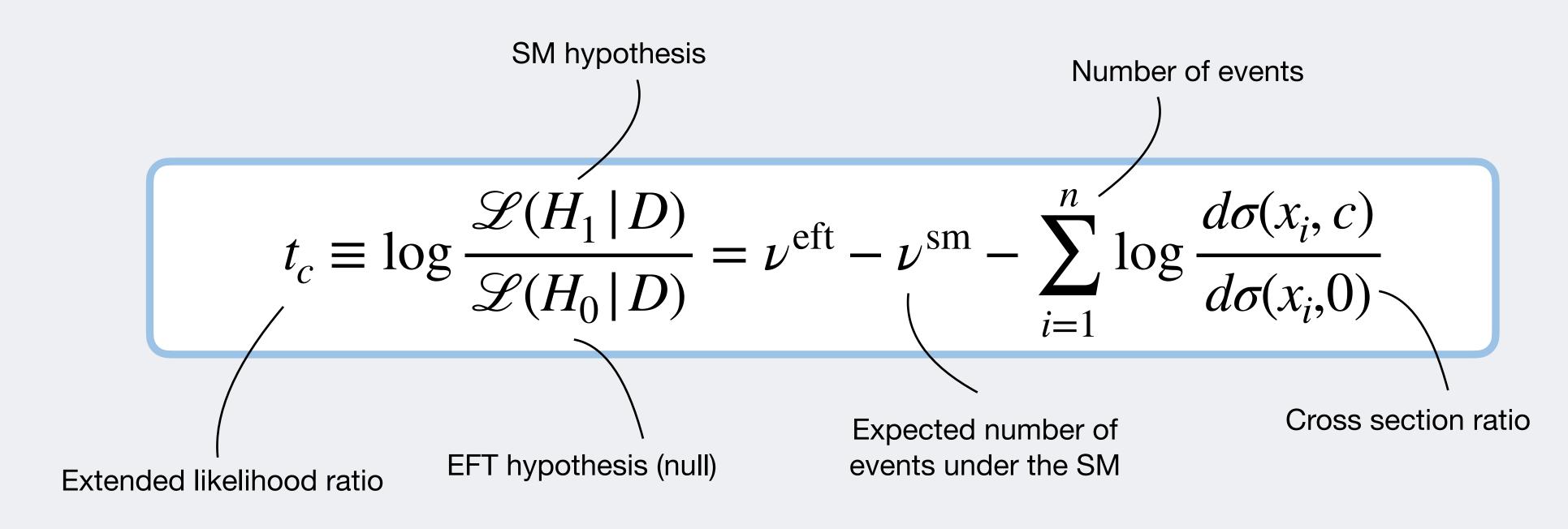
- Any other test statistic has less power, i.e. gives suboptimal bounds
- No longer applies in case of systematics: profile likelihood ratio (WIP)

Neyman-Pearson: the most powerful statistical test at fixed size (significance level) between

$$\equiv \log \frac{\mathscr{L}(H_1 \mid D)}{\mathscr{L}(H_0 \mid D)}$$

Finding optimal observables

Key idea: train a NN classifier to learn the extended likelihood ratio



The events x_i can be invariant masses, rapidities, scattering angles, p_T , ...

Binary classifier

• Train a **classifier** by minimising the cross entropy (or the quadratic loss) loss functional

$$L[f(x)] = -\int dx \frac{d\sigma_0}{dx} \log(1-f) - \int dx \frac{d\sigma_1}{dx} \log f$$

which gives

$$\frac{\delta L}{\delta f(x')} = \frac{d\sigma_0}{1 - f} - \frac{d\sigma_1}{f} = 0 \implies \hat{f} = \frac{1}{1 + \frac{d\sigma_0}{d\sigma_1}}$$

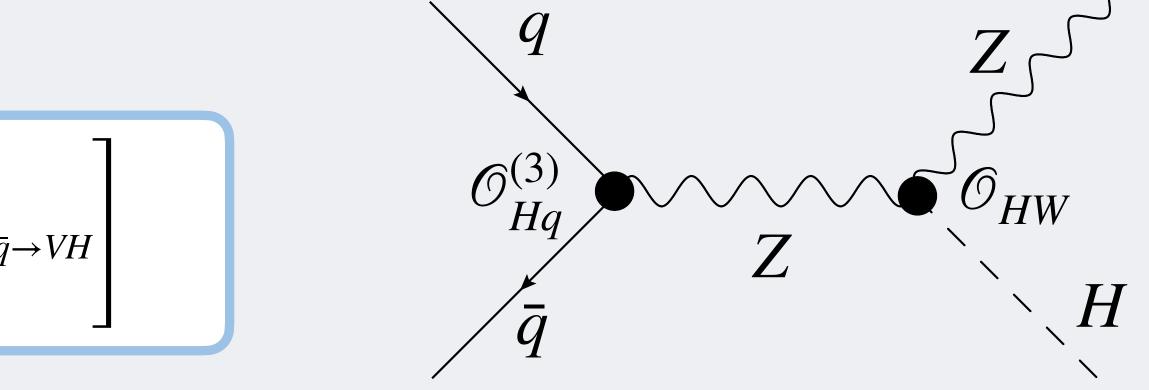
• This is a **one-to-one estimator** of the likelihood ratio!

The choice of loss functional is not unique!

VH production

- Need access to underlying truth to assess the NN accuracy
- Efficient pipeline using FeynRules, SMEFTsim, FeynArts / FormCalc to obtain analytical predictions
- LO parton level, but the method is applicable to any final state
- Study \mathcal{O}_{HW} , \mathcal{O}_{HWB} , \mathcal{O}_{HB} , \mathcal{O}_{HD} and $\mathcal{O}_{Hq}^{(3)}$ up to $\mathcal{O}(\Lambda^{-4})$ differential in the rapidity and invariant mass m_{VH}

$$\frac{d\sigma}{dm_{VH}dY} = \frac{2m_{VH}}{s} \left[\sum_{f} f_f(x_1, Q) f_{\bar{f}}(x_2, Q) \hat{\sigma}_{q\bar{q}} \right]$$

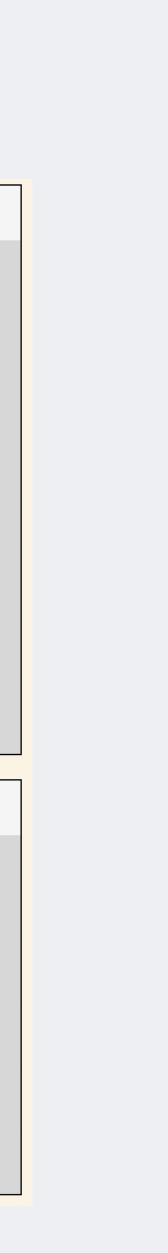


VH production: FormCalc

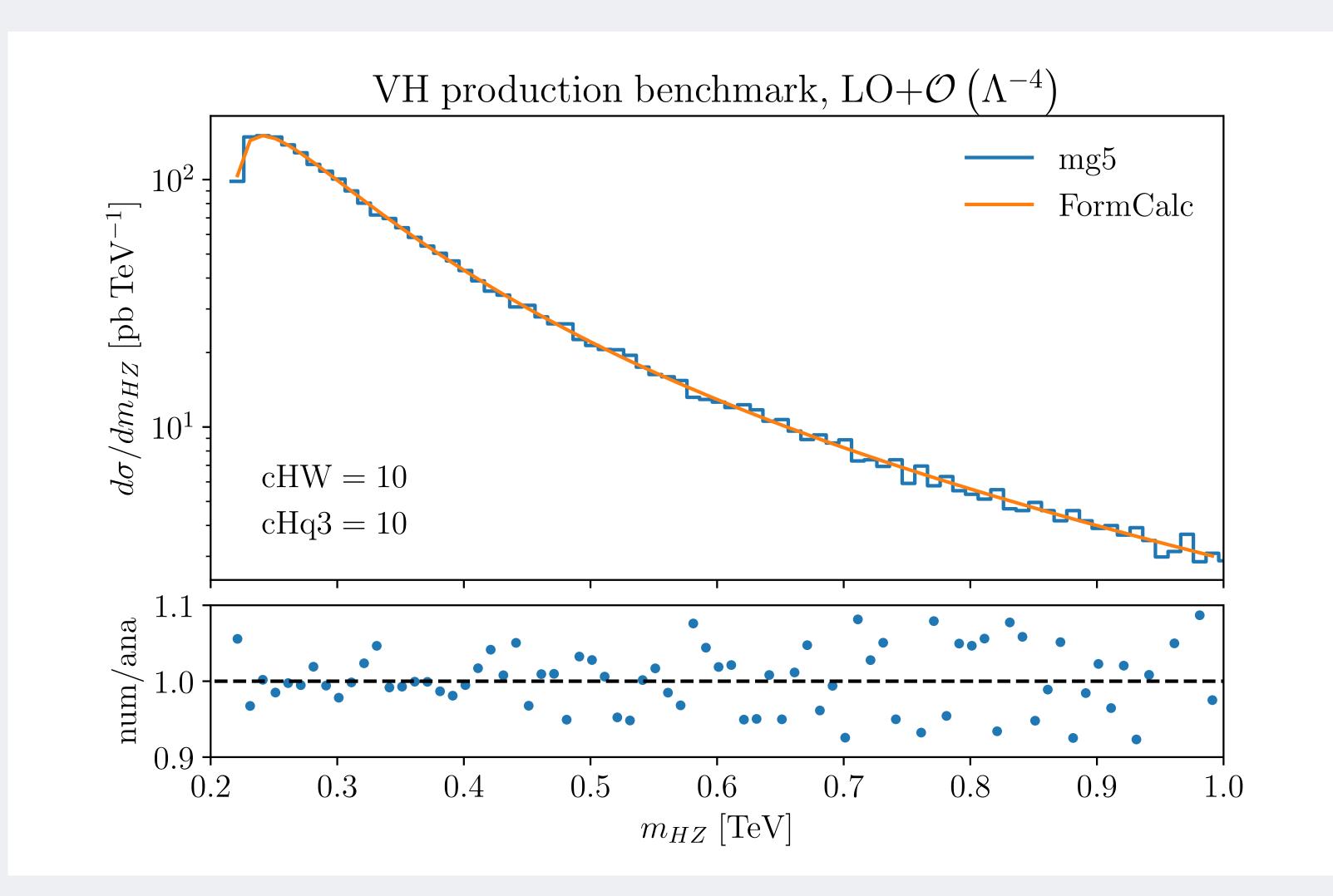
dim6QuadSimp = FullSimplify[dim6Quad] 1 $\frac{1}{216 \text{ cth}^6 \text{ MZ2} (\text{MZ2} - \text{S})^2 \text{ S}^2 \text{ sth}^6 \text{ T}^2 \text{ U}^2 \text{ A}^4}{1}$ $\pi v^{2} (-48 \text{ Alfa2 cHq3 cth}^{2} \pi \text{ Ssth}^{2} \text{ T}^{2} \text{ U}^{2} (3 \text{ cHq3 (MZ2 - S) S} (MZ2^{2} + MZ2 (S - T - U) + T U)))$ MH2 (MZ2 + T) U + ST (S + T + U) + MZ2 (S² - (T - 2U) (T + U) - S (5T + U)) + s $(MZ2^{3} + MH2 (3MZ2 - 2S - T) T + MH2^{2} (-MZ2 + T) + MZ2^{2} (6S - 3U) - MH2 (MZ2 + T) + MZ2^{2} (6S - 3U) - MH2 (MZ2 + T) + MZ2^{2} (MZ2 + T$ Alfa (24 cHq3 cth⁴ (MZ2 - S) S sth⁴ (cHW cth² (-3 S + 4 MZ2 sth²) + sth (-cHWB cth ($MH2^{2} (-MZ2 + T) + MZ2^{2} (6 S - 3 U) - MH2 (MZ2 + T) U + S T (S + T + U) + MZ2 (S^{2} + 1) + MZ2$ $2 \text{ cHW cth}^{2} \text{ sth} (\text{cHWB cth} (3 \text{ S} (2 \text{ MZ2} + \text{ S}) - 8 \text{ MZ2} (2 \text{ MZ2} + \text{ S}) \text{ sth}^{2} + 32 \text{ MZ2}^{2} \text{ st}^{2})$ sth^{2} (cHWB² cth² (5 S² + 8 MZ2² (1 - 2 sth²)² + 4 MZ2 S (-1 + 2 sth²)) + cHB² sth² 2 cHB cHWB cth sth (S (6 MZ2 + 3 S + 4 (-7 MZ2 + S) sth^{2} + 32 MZ2 sth^{4}) + 4 $(MZ2^{3} (4S + T - 2U) - (MH2 - S)^{2}T (MH2 - S - T - U) + MZ2^{2} (4S^{2} + MH2T - (T - 2U)) + MZ2^{2} (4S^{2} + MH2T - (T - 2U))$ $9 \text{ cHq}3^2 \text{ S}^2 (8 \text{ Alfa}2 \pi^2 \text{ T}^2 \text{ U}^2 (\text{MZ}2^2 + \text{MZ}2 (\text{S} - \text{T} - \text{U}) + \text{T} \text{U}) \text{ v}^4 - \text{cth}^4 (\text{MZ}2 - \text{S})^2 \text{ sth}^4$ $\left(-8 T^{2} U^{2} (MZ2^{2} + MZ2 (S - T - U) + T U) - (2 S T^{2} U^{2} - 3 MH2 MZ2^{2} (T^{2} + U^{2}) - MZ2^{3} (T^{2} + U^{2}) + 2 MZ2 T U (T^{2} + U^{2}) + MZ2^{2} (S + T + U) (T^{2} + U^{2}) \right) v^{2} yu^{2})))$

dim6LinSimp = FullSimplify[dim6Lin] $\overline{108 \text{ cth}^6 \text{ MZ2 } (\text{MZ2} - \text{S})^2 \text{ Ssth}^6 \text{ T}^2 \text{ U}^2 \text{ A}^2}$ $\pi v^{2} (-4 \text{ Alfa2} \pi \text{ T}^{2} \text{ U}^{2} (\text{cHW cth}^{4} \text{ sth}^{2} (-9 \text{ S} + 12 (MZ2 + \text{ S}) \text{ sth}^{2} - 32 \text{ MZ2 sth}^{4}) (MZ2^{3} + \text{MH2})$ MZ2 $(S^2 - (T - 2U) (T + U) - S (5T + U))) - cth^2 sth^3 (cHWB cth (6MZ2 + 3S + 4)))$ $(MZ2^{3} + MH2 (3MZ2 - 2S - T) T + MH2^{2} (-MZ2 + T) + MZ2^{2} (6S - 3U) - MH2 (MZ2 + T) + MZ2^{2} (6S - 3U) - MH2 (MZ2 + T) + MZ2^{2} (MZ2 + T$ $6 cHq3 S (-3 + 4 sth^{2}) (MZ2^{2} + MZ2 (S - T - U) + TU) (cth^{2} (-MZ2 + S) sth^{2} + Alfa = 100 cth^{2} (-MZ2 + S) sth^{$ $3 \text{ Alfa cHq3 cth}^{4} (MZ2 - S)^{2} \text{ Ssth}^{4} (MZ2^{2} (-3 + 4 \text{ sth}^{2}) (MZ2 - S - T) T^{2} + MZ2 T (8 (MZ2^{2} - S - T) T^{2} + MZ2 T)$ $(MZ2^{2} (MZ2 - S) (-3 + 4 sth^{2}) + MZ2 (3 MZ2 - 4 (3 MZ2 + 4 S) sth^{2}) T + 2 (3 S - 8 MZ2)$ $MZ2 \left(-3 + 4 \, \text{sth}^2\right) \ (MZ2 + 2 \, \text{T}) \ \text{U}^3 + 3 \ \text{MH2} \ \text{MZ2}^2 \ \left(\left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 + 4 \, \text{sth}^2\right) \ \text{T}^2 + 8 \, \text{sth}^2 \ \text{T} \ \text{U} + \left(-3 \, \text{T} \, \text{T} \ \text{$

$$+ cHW cth^{2} (-3 S + 2 (MZ2 + S) sth^{2}) (MZ2^{3} + MH2 (3 MZ2 - 2 S - T) T + MH2^{2} (-MZ2 + T) + MZ2^{2} (6 S - 3 U) - sth (cHWB cth (-MZ2 - 2 S + 2 (MZ2 + S) sth^{2}) + cHB sth (2 cth^{2} (-MZ2 + S) + S (-3 + 4 sth^{2}))) (T) U + ST (S + T + U) + MZ2 (S^{2} - (T - 2 U) (T + U) - S (5 T + U))) v^{2} + S + MZ2 (2 - 4 sth^{2}) + cHB sth (4 cth^{2} (-MZ2 + S) + S (-3 + 4 sth^{2})))) T^{2} U^{2} (MZ2^{3} + MH2 (3 MZ2 - 2 S - T) T + (T - 2 U) (T + U) - S (5 T + U))) + 8 cth^{4} sth^{4} (cHW^{2} cth^{4} (9 S^{2} - 24 MZ2 S sth^{2} + 32 MZ2^{2} sth^{4}) + cth^{4}) + cHB sth (4 cth^{2} (MZ2 - S) (3 S - 8 MZ2 sth^{2}) + S (9 S - 12 (MZ2 + S) sth^{2} + 32 MZ2 sth^{4}))) + th^{2} (32 cth^{4} (MZ2 - S)^{2} - 8 cth^{2} (MZ2 - S) S (-3 + 8 sth^{2}) + S^{2} (9 - 24 sth^{2} + 32 sth^{4})) + cth^{2} (-MZ2 + S) (S + MZ2 (-4 + 8 sth^{2})))) T^{2} U^{2} U^{2} U (T + U) - S (3 T + 2 U)) - MZ2 (MH2^{2} (T - 2 U) + S (3 S T + 2 (T - U) U) + 2 MH2 (S (-2 T + U) + U (T + U)))) + 4^{4}$$



VH production: benchmark



Training the likelihood ratio

We separate the learning problem by exploiting the structure inherent to the EFT parameter space:

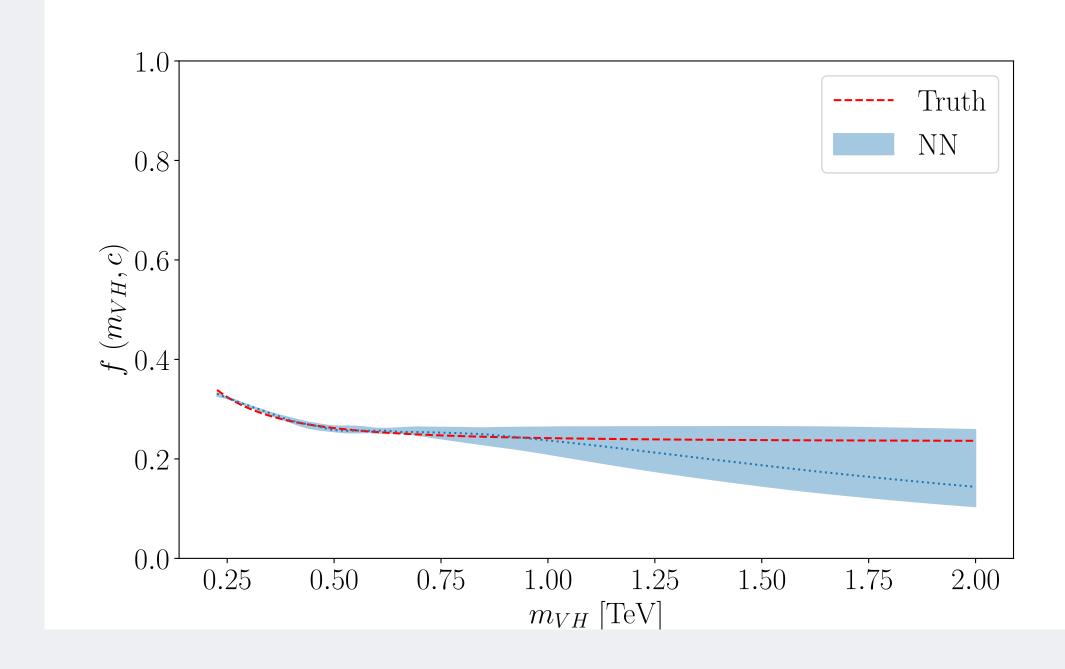
$$r(x, \mathbf{c}) = 1 + c_1 \alpha_1(x) + c_2 \alpha_2(x) + c_1^2 \beta_{11}(x) + c_1 c_2 \beta_{12}(x) + \beta_{22} c_2^2$$

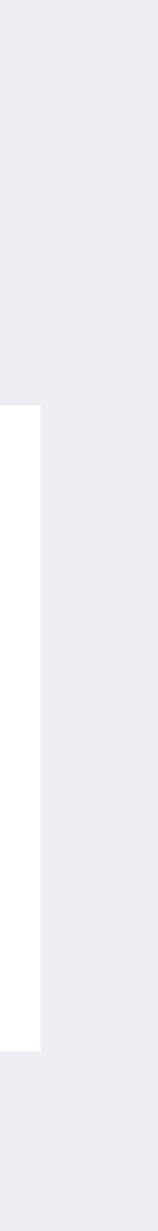
- 1. Train the linear coefficient functions in parallel
- 2. Switch on quadratic corrections and train the quadratic coefficients
- 3. The cross terms can finally be extracted

New: this allows for efficient scaling (quadratically) and parallel training for *n* EFT parameters

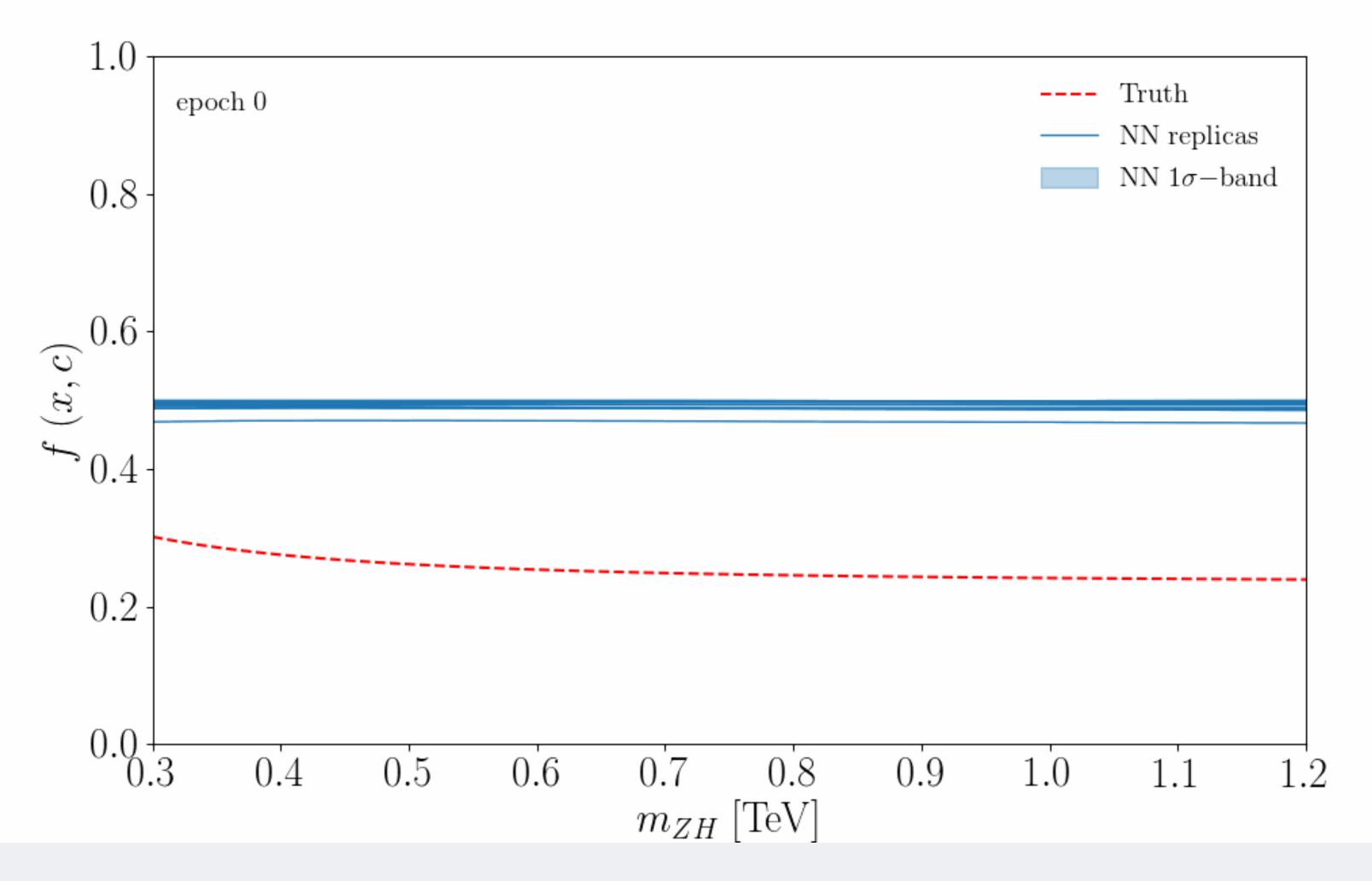
- We systematically assess the **model** uncertainties associated to the NN parameterisation of the likelihood ratio
- **Replica:** an independent MC training set to propagate the error to the space of models
- Train 30 independent replicas in parallel
- Translate to the error on the Wilson coefficients

NN model uncertainties

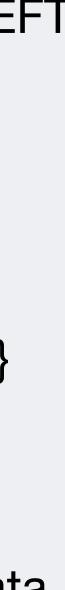




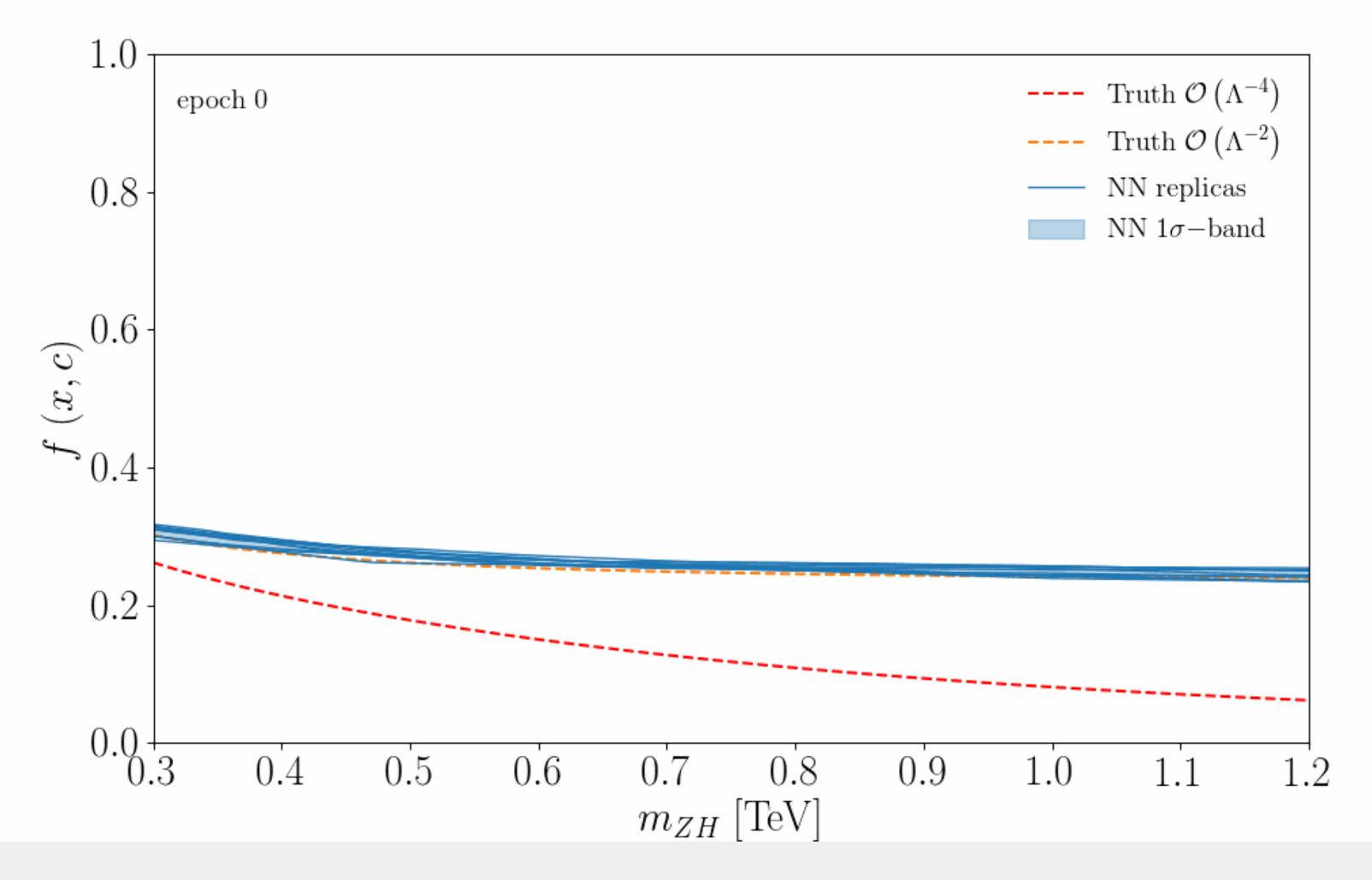
Seeing the training at work



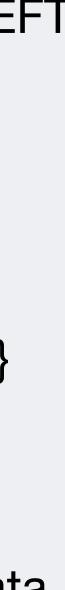
- Trained on 30 replicas
- 100K events in SM and EFT
- Cross validation
- Architecture: {2, 5x30, 1} with ReLU activation functions
- Standardised training data to zero mean and unit variance



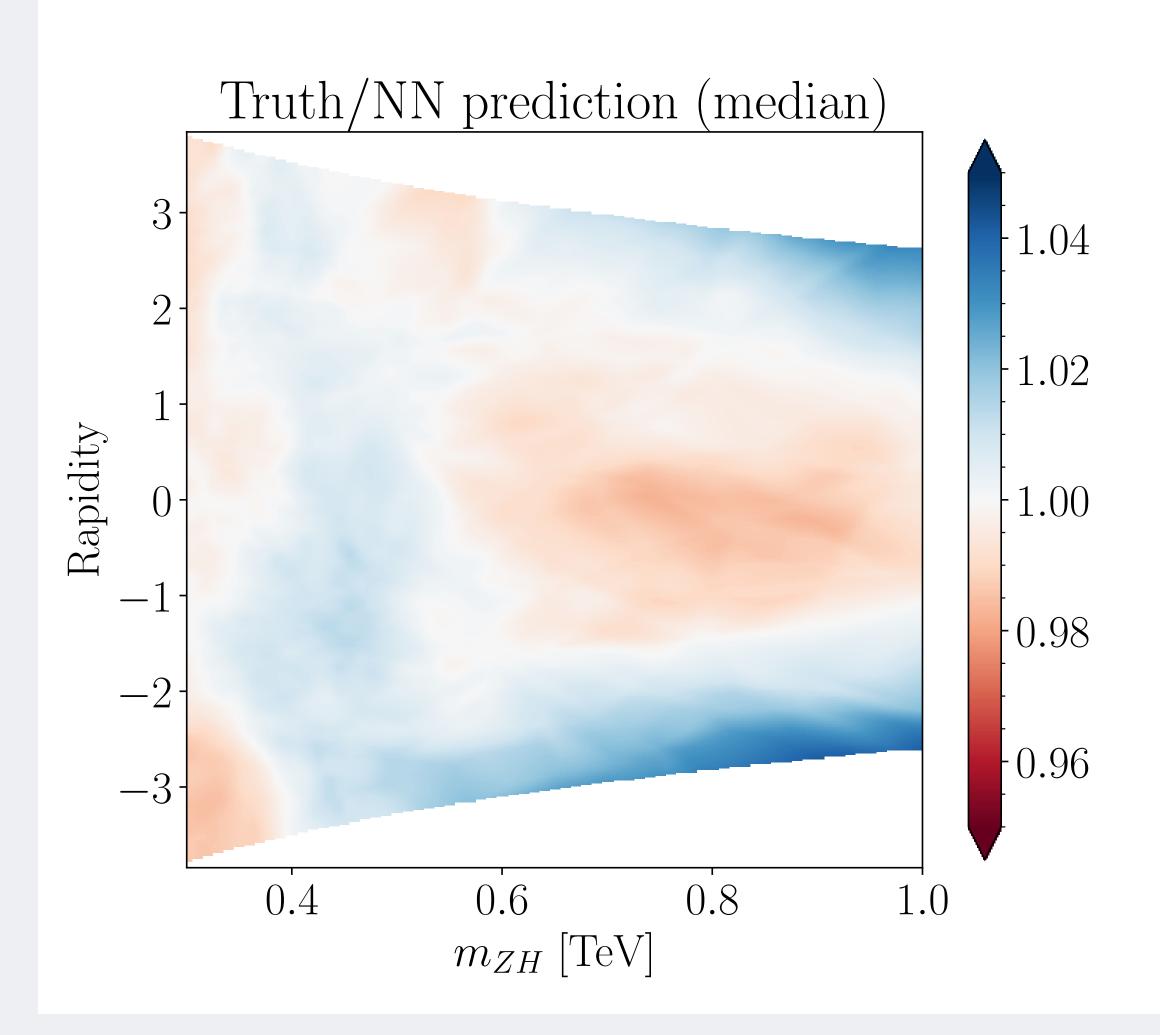
Adding quadratic corrections

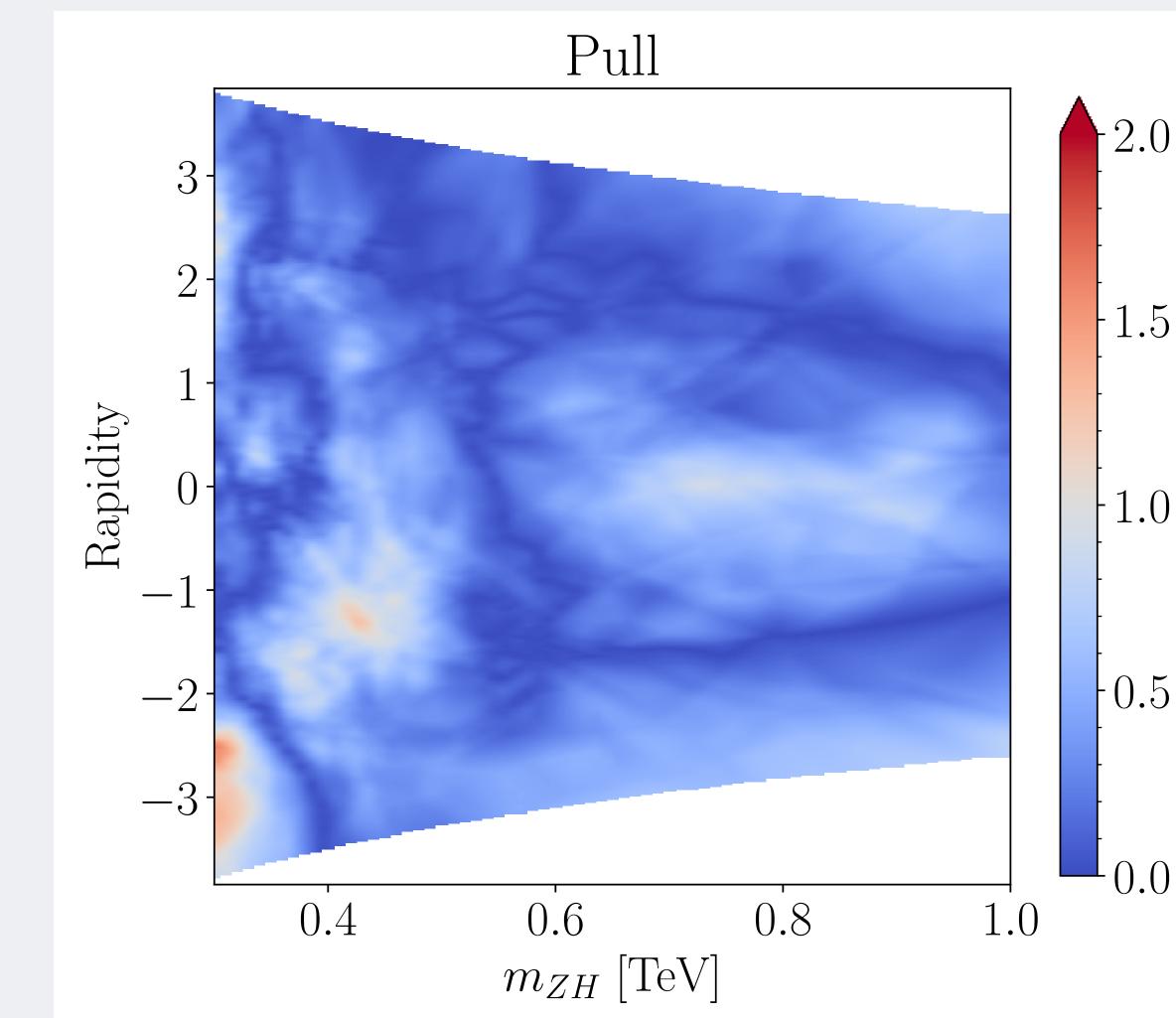


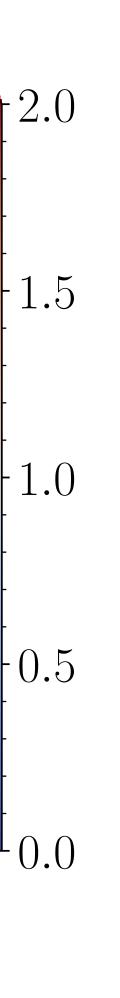
- Trained on 30 replicas
- 100K events in SM and EFT
- Cross validation
- Architecture: {2, 5x30, 1} with ReLU activation functions
- Standardised training data to zero mean and unit variance



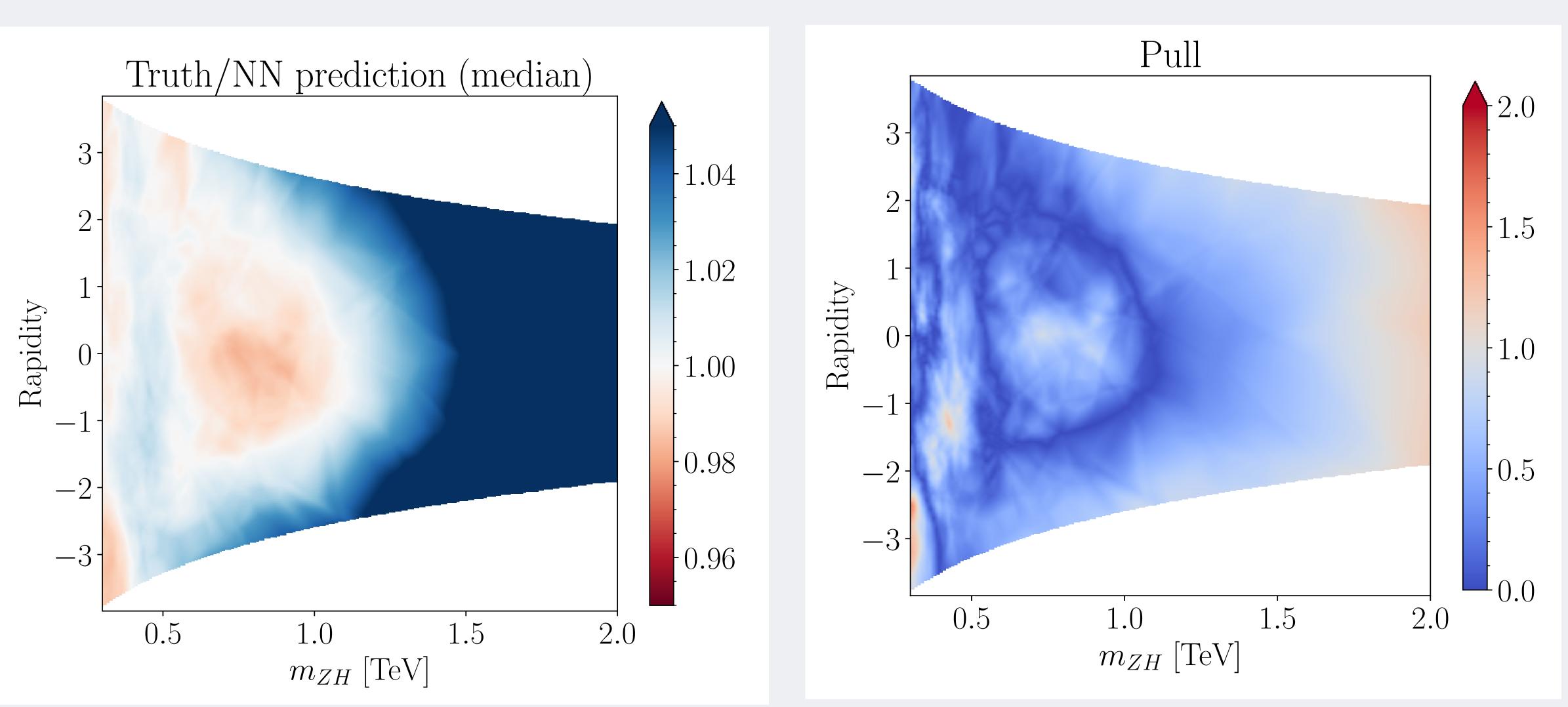
Training performances



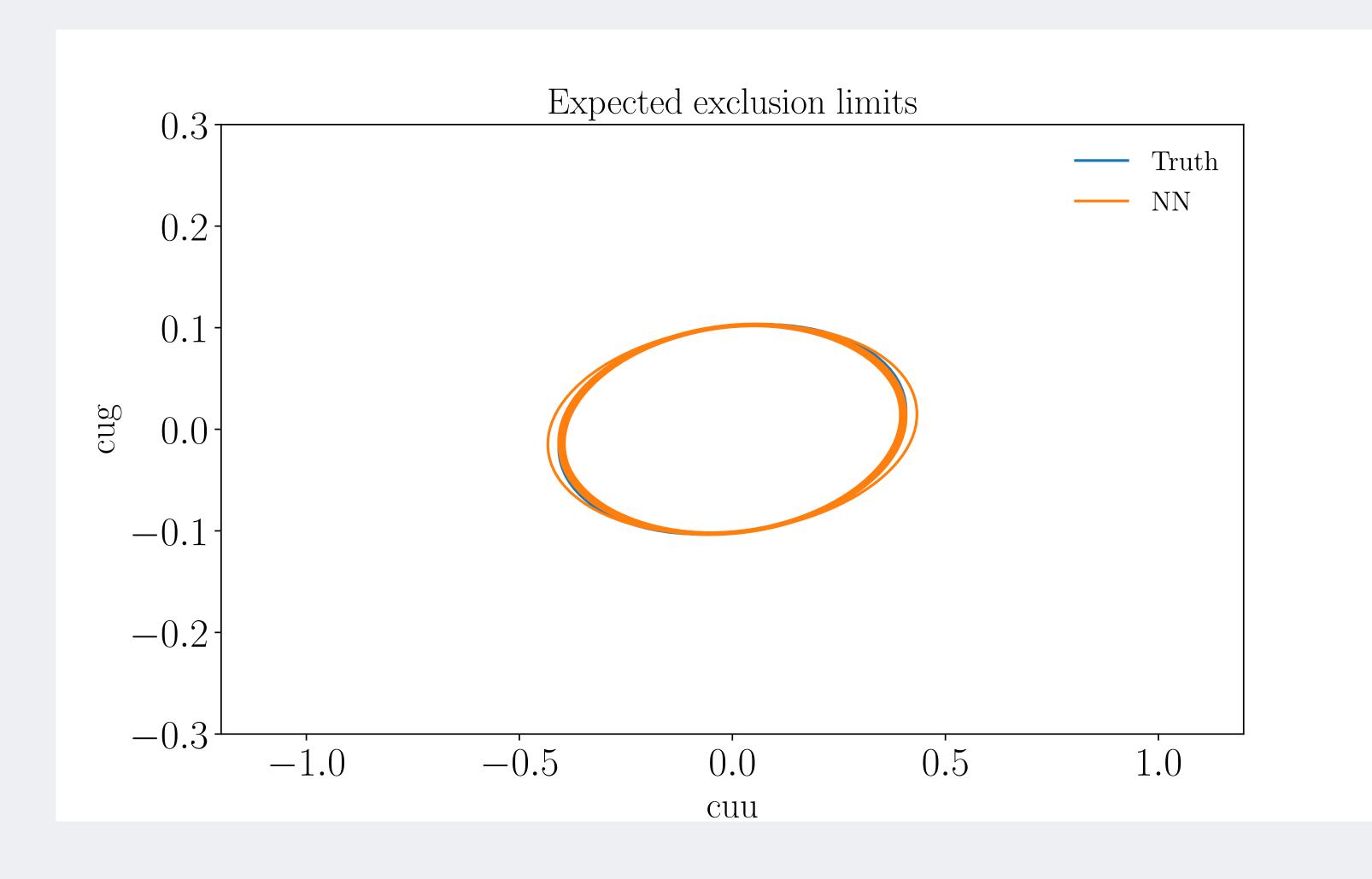




Training performances



Limits: NN versus Truth



- Train a surrogate of the **likelihood ratio**
- **Efficient scaling** properties to *n* EFT parameters necessary for global EFT fits
- Good reconstruction **performances** throughout phase space
- Outlook: Include systematics with the profile likelihood ratio

Summary

Key question: given a collider process, how can one define optimal observables with the highest sensitivity to EFT coefficients?

