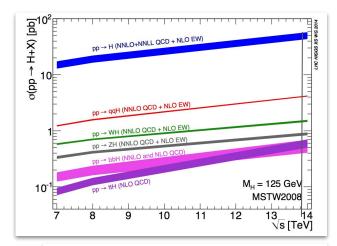
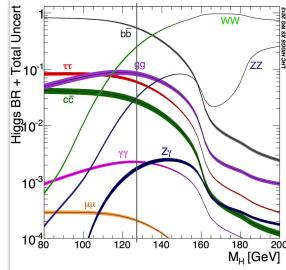
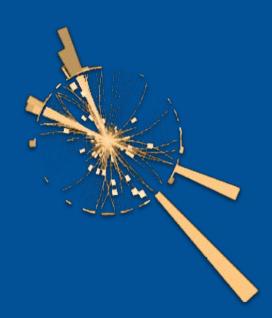


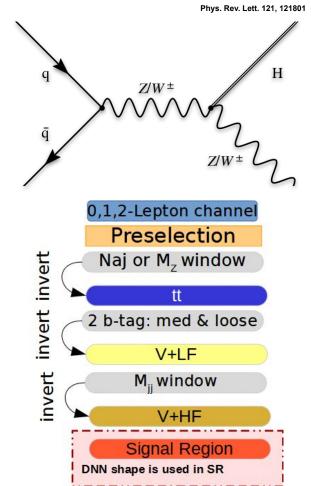
Higgs boson decays into b and c quarks with the CMS experiment


Sam Kaveh (DESY) on behalf of the CMS collaboration

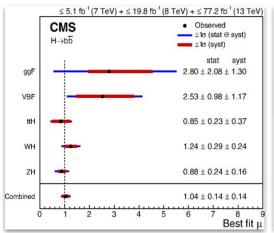


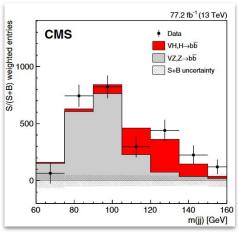

Introduction

- Higgs boson discovered 2012
- Higgs precision measurement and properties has been the focus since
- Full Run 2 data brings new challenges, needs new ideas
- In this talk:
 - $\circ \quad VH (H \rightarrow bb)$
 - \circ VH (H \rightarrow c \bar{c})
 - Highly boosted Higgs (H→bb̄)



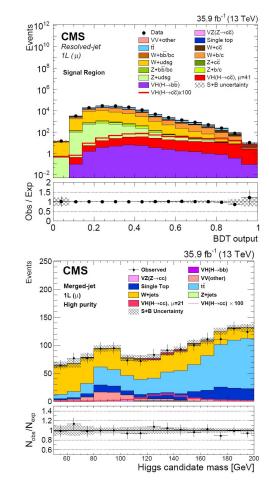
VH (H→bb) L=77.2 fb⁻¹@13 TeV


VH (H→bb)


- 3 channels are considered:
 - $\circ \quad \text{0-lepton } (Z \rightarrow vv)$
 - $\circ \qquad 1\text{-lepton } (W \rightarrow l\mathbf{v})$
 - 2-lepton (Z→ll)
- Orthogonal control regions (CR):
 - \circ tt
 - V+HF(heavy flavor)
 - V+LF (lighter flavors)
- Multi-category DNN in V+HF CR
- DNN for signal classification and extraction

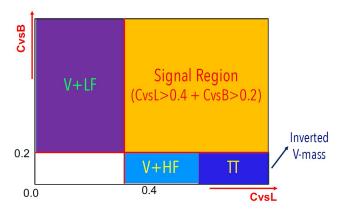
VH (H→bb̄) Results

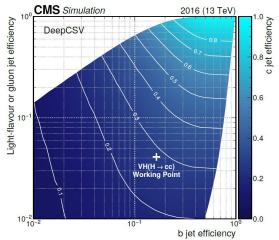
- Combination of Run 1 and partial Run 2 data of CMS
- In agreement with SM
- Combined with other production channels
- Observation of H decaying to b-quarks
- Full Run 2 and STXS analysis on the way



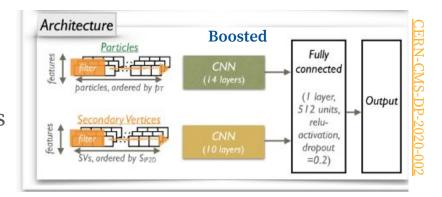
	Signific			
Data set	Expected	Observed	Signal strength	
2017				
0-lepton	1.9	1.3	0.73 ± 0.65	
1-lepton	1.8	2.6	1.32 ± 0.55	
2-lepton	1.9	1.9	1.05 ± 0.59	
Combined	3.1	3.3	1.08 ± 0.34	
Run 2	4.2	4.4	1.06 ± 0.26	
Run 1 + run 2	4.9	4.8	1.01 ± 0.22	

VH (H→cc̄) L= 35.9 fb¹ @13 TeV

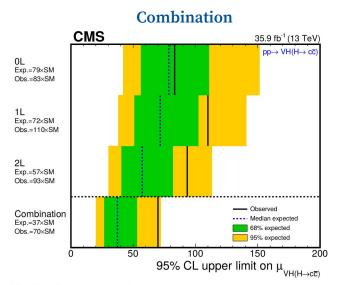

$VH (H \rightarrow c\overline{c})$


- Probing Higgs decays to 2nd gen. Fermions
- 3-channels: 0-lepton (Z→vv), 1-lepton (W→lv),
 2-lepton (Z→ll)
- Resolved and boosted topologies
- CRs for the background normalization in resolved and multivariate methods in boosted
- Main challenge, controlling the c-quark and light-quark against the b-quark background

VH (H→cc̄) resolved

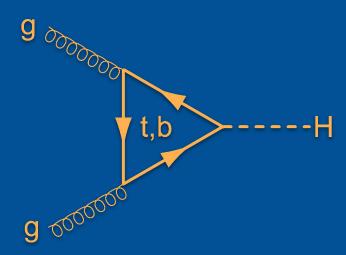

- DeepCSV provides three discriminants
- P(B) used directly for b-tagging
- P(C) and P(L) used for c-tagging From
 P(L), P(C) and P(B)
 - $\bigcirc \quad \text{CvsL} = P(C) / [P(C) + P(L)]$
 - \circ CvsB = P(C) / [P(C) + P(B)]
- Using BDTs for signal extraction

VH (H→cc̄) boosted

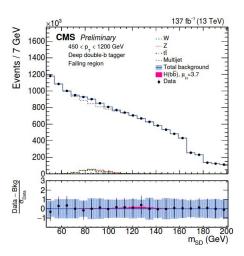

- Using AK15 jets in boosted analysis
- Multicategory multivariate analysis tools in boosted analysis
- Signal is extracted via a binned maximum likelihood fit to the soft-drop mass

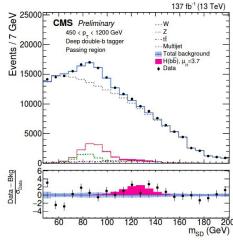
Output					
Category	Label				
	H (bb)				
Higgs	H (cc)				
	H (W*→qqqq)				
	top (bcq)				
T	top (bqq)				
Тор	top (bc)				
	top (bq)				
w	W (cq)				
**	W (qq)				
	Z (bb)				
Z	Z (cc)				
	Z (qq)				
	QCD (bb)				
	QCD (cc)				
QCD	QCD (b)				
	QCD (c)				
	QCD (others)				

VH (H→cc̄) Results


- Inclusive resolved and boosted analysis
- Combined to improve accuracy
- Consistent with SM
- Full Run 2 analysis underway

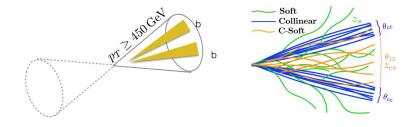
	Resolved-jet (inclusive)			Merged-jet (inclusive)				
	0L	1L	2L	All channels	0L	1L	2L	All channels
Expected UL	84^{+35}_{-24}	79^{+34}_{-23}	59^{+25}_{-17}	38^{+16}_{-11}	81^{+39}_{-24}	88^{+43}_{-27}	90^{+48}_{-29}	49^{+24}_{-15}
Observed UL	66	120	116	75	74	120	76	71

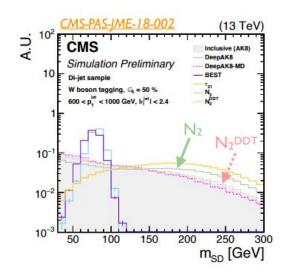

values w.r.t SM


Boosted Higgs (H→bb) L= 137 fb @13 TeV

Boosted H(H→bb) Analysis strategy

- Full Run2
- Boosted Higgs decays to bb
- Jet substructure and novel b-tagging to reject QCD
- The W and Z boson resonances used to constraint systematic unc.
- 2x improvement compared to previous CMS result
 - Increased integrated luminosity
 - Improved b tagging
 - o Smaller theoretical uncertainties.

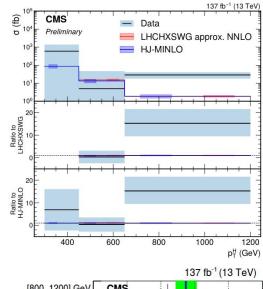

Boosted H(H→bb) Analysis strategy

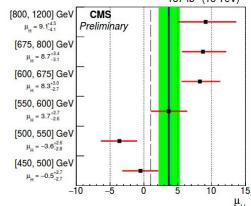

\bullet N_2 :

Generalized energy correlation functions [JHEP 1612 (2016) 153] for 2-prong (W/Z/H) tagging

• N_2^{DDT} :

- Mass-decorrelated version of N2 using the DDT (Designed Decorrelated Tagger
 [JHEP 1605 (2016) 156]) method
- Reduces mass sculpting and systematic uncertainties




Boosted H(H→bb) Results

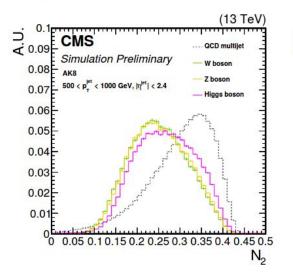
• $\mu_{\rm H} = 3.68 \pm 1.20 ({\rm stat})^{+0.63}_{-0.66} ({\rm syst})^{+0.81}_{-0.46} ({\rm theo})$ w.r.t SM

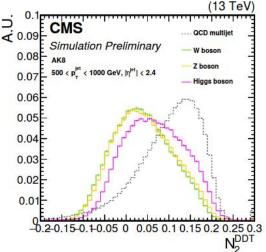
• 2.54 σ significance excess where the expectation is 0.71

 Unfolded differential cross-section as function of Higgs boson p_T

Summary

Summary


- Looked at Higgs associated production and inclusive highly boosted
 Higgs analyses in decays to b,c-quarks
- The beyond expected results achieved is the outcome of efforts in many branches
 - Accurate, smart and physics aware b-tagging
 - Using new computing and analysis technologies
 - Quantity and quality of data which has never matched before in the history of HEP
- Partial Run 2 analyses reported will update with full data, so stay tuned!


Back up

A decorrelation procedure is further applied to avoid distorting the jet mass distribution when a selection based on N_2 is made. We design a transformation from N_2 to $N_2^{\rm DDT}$, where DDT stands for "designed decorrelated tagger" [15]. The transformation is defined as a function of the dimensionless scaling variable $\rho = \ln(m_{\rm SD}^2/p_{\rm T}^2)$ and the jet $p_{\rm T}$:

$$N_2^{\text{DDT}}(\rho, p_{\text{T}}) = N_2(\rho, p_{\text{T}}) - N_2^{(X\%)}(\rho, p_{\text{T}}), \qquad (12)$$

where $N_2^{(X\%)}$ is the X percentile of the N_2 distribution in simulated QCD events. This ensures that the selection $N_2^{\rm DDT} < 0$ yields a constant QCD background efficiency of X% across the mass and $p_{\rm T}$ range considered with no loss in performance. The value X=5 is used throughout this note, following the choice in [76]. The distributions of the N_2 and $N_2^{\rm DDT}$ in signal and background jets are shown in Fig. 6. Signal jets populate smaller values, whereas background jets have larger values. The N_2 DDT is used for V tagging with $p_{\rm T}$ in excess of 500 GeV in the search for light dijet resonances [76].

