

Higgs boson coupling to second generation fermions with the ATLAS detector

Maria Mironova (University of Oxford) on behalf of the ATLAS collaboration

Higgs 2021 21/10/2021

Introduction

- Coupling of Higgs boson to gauge bosons and 3rd generation fermions well-established
- → Good agreement with the Standard model
- No observation of coupling to Ist and 2nd generation so far
- → any deviation would indicate new physics
- Next most promising measurements are couplings to muons and charm-quarks
- → Use the ATLAS Full Run 2 dataset to improve our constraints

$H \rightarrow \mu\mu$

Higgs coupling to muons

- Direct probe of Higgs coupling to second generation
- Good mass resolution $\sigma_m/m(\mu\mu) \sim 2\%$

Main experimental challenges:

- Rare process: branching ratio of $(2.17 \pm 0.04) \times 10^{-4}$
- Large background from Drell-Yan μμ production
- → Signal-to-background ratio of ~0.2% in signal region (120-130 GeV)

Analysis strategy

- Exploit multiple production modes: VBF, VH, ggF and ttH
- Sort events into 20 mutually exclusive categories, using process specific boosted decision trees:
 - Overall categories driven by kinematic criteria on jets/leptons
 - Then, MVA discriminants categorise signal and background → build sub-categories
- S/B ranging from <0.1% to 18%
- Significance ranging from 0.1 to 0.6 σ
- VBF and ggF most sensitive
- Drell-Yan background dominant for ggF/VBF categories & excellent background modelling is crucial:
 - Parametric function with rigid core (DY, corrected for detector resolution) + flexible part (to account for mismodelling and data/MC)
 - → Reduces number of degrees of freedom in fit, while keeping spurious signal low

Results

- Fit to m_{uu} performed between 110-160 GeV
- Signal modelling: double-sided crystal ball function
- Background modelling using empirical function

- Best fit signal strength: 1.2 ± 0.6
- Observed BR limit at 95% CL: $<4.7 \times 10^{-4}$
- Significance: 2.0σ (1.7 σ) observed (expected)
- Uncertainties dominated by data statistics, followed by signal theory uncertainties
- Large improvement over previous publication due to larger dataset and analysis improvements

H→cc

Run: 303892

Event: 4866214607

2016-07-16 06:20:19 CEST

Higgs coupling to charm quarks

- Probe of Higgs coupling to 2nd generation of quarks
- One of the largest contributions to Higgs width that we have no evidence for
- Small charm Yukawa coupling → susceptible to significant modifications in various new physics scenarios
- Search in VH production mode
- Categorisation into channels by the decay of the vector boson:
 - 0 lepton: Z(vv)H(cc)
 - I lepton:W(lv)H(cc)
 - 2 lepton: Z(II)H(cc)

Indirect constraints from $H \rightarrow J/\Psi \gamma$ on Higgs-charm coupling Indirect constraints from $H \rightarrow \phi \gamma$ on Higgs-strange coupling

Analysis strategy

- Further event categorisation by transverse momentum of vector boson, jet multiplicity and 1 or 2 c-tags
- Flavour tagging: Identification of c-jets and orthogonality to the VH(bb) analysis
- c-tagging + b-veto working point (WP):
 - dedicated c-tagger for the VH(cc) analysis
 - b-veto using the b-tagging strategy of the VH(bb) analysis
- Dedicated optimisation and calibration of WP:
 - c-jets (27%), b-jets (8.3%), light-jets (1.7%)
- Cut-based analysis: m_{cc} of two leading p_T jets as a discriminant
- Simultaneous binned likelihood fit to the signal strength of VH(cc),VZ(cc) and VW(cq)

Signal regions

Discriminant: m_{cc} of the two leading p_T jets

Signal: VH(cc), VZ(cc), VW(cq)

Major backgrounds: W+jets, Z+jets, Top → Constrained in dedicated control regions

Subdominant backgrounds: VH(bb), VV background

Mass distributions

- m_{cc} distributions with backgrounds subtracted \rightarrow good data/simulation agreement
- Diboson cross-checks measurements:
 - VW(cq) significance of 3.8σ (4.6 σ expected)
 - VZ(cc) significance of **2.6** σ (2.2 σ expected)

→ First measurements of VZ(cc) and VW(cq) using c-tagging!

Signal strengths and limits

Best fit signal strength for VH(cc)

95% CL limits on $\mu_{VH(cc)}$

- Best fit signal strength $\mu_{VH(cc)} = -9 \pm 15 \rightarrow \text{compatibility with SM: } 83.9\%$
 - Statistical and systematic uncertainties of similar size
 - Leading systematics: V+jets/top modelling and flavour tagging
- Observed VH(cc) limit of 26 x SM (31 x SM expected) → best limit on VH(cc) yet!

κ_c interpretation

- Possible to reparametrise signals strength in terms of κ_i coupling modifiers
- Considering modifications to decay only
- Signal strength parameterised as:

$$\mu(\kappa_i) = \frac{\kappa_c^2}{B(H \to c\bar{c})\kappa_c^2 + (1 - B(H \to c\bar{c}))}$$

(other coupling modifiers set to I)

- Implicitly assuming no contributions from BSM decays to Higgs width with this parametrisation
- Only sensitive to κ_c in this parametrisation if limit on μ <35, assuming all other contributions to Higgs width are SM-like

Signal strength parameterisation as a function of κ_c

κ_c interpretation

- Expected limit on κ_c at 95% CL in combined fit $|\kappa_c| < 12.4$
- Observed best fit $\kappa_c = 0$
- First direct limit on κ_c @ 95%CL with $|\kappa_c|$ < 8.5

	95% CL limit		
Expected	[-12.3, 12.4]		
Observed	[-8.5, 8.5]		

Likelihood scan of κ_c

Precision measurements

- High-precision Higgs measurements in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ channels
- Fit to invariant mass $m_{\gamma\gamma}$ or m_{4l}
- Inclusive and differential cross-section measurements
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ can be sensitive to κ_c and κ_b through quark loop contributions to Higgs production
- Impact on shape and normalisation of the p_T^H spectrum
- → Can be constrained in differential measurements

Indirect constraints

- $H \rightarrow \gamma \gamma$: considering only p_T^H shape to set constraints on κ_c , assuming κ_b and $\kappa_t = 1$
- $H \rightarrow ZZ^* \rightarrow 4I: I$) Considering only p_T^H shape to set constraints on κ_c and κ_b
 - 2) Considering both p_T^H shape and normalisation, w/ additional assumptions \rightarrow best constraining power
- \rightarrow Limitations are complementary to H \rightarrow cc, excellent pairing towards constraining the Hcc coupling with ATLAS data

Conclusions

 Presented latest ATLAS Run 2 results of the Higgs couplings to second generation fermions

H→μμ:

2.0σ observed significance (for 1.7σ expected)

$H \rightarrow cc$:

- Observed limit of 26 x SM on VH(cc) (for 31 x SM expected)
- First direct limit on κ_c @ 95%CL with $|\kappa_c|$ < 8.5

Indirect constraints:

- $H \rightarrow \gamma \gamma$, p_T^H shape-only: -19 < κ_c < 26
- $H \rightarrow ZZ^* \rightarrow 4I$, p_T^H shape-only: $-11.7 < \kappa_c < 10.5$
- $H \rightarrow ZZ^* \rightarrow 4I$, p_T^H shape & norm: $-7.5 < \kappa_c < 9.4$

→ Great results with Run 2 and lots to look forward to in Run 3 and at HL-LHC!

any questions? Maria Mironova 18/10/2021 19

MC samples

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$qq \to VH$ $(H \to c\bar{c}/b\bar{b})$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)
$gg \to ZH \\ (H \to c\bar{c}/b\bar{b})$	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NLO+NLL
$tar{t}$	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NNLO +NNLL
<i>t/s</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NLO
Wt-channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	Approx. NNLO
V+jets	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$qq \rightarrow VV$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
$gg \to VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

Event selection / modelling uncertainities

Common Selections				
Central jets Signal jet p_T c -jets b -jets Jets	≥ 2 ≥ 1 signal jet with $p_T > 45$ GeV 1 or 2 <i>c</i> -tagged signal jets No <i>b</i> -tagged non-signal jets 2, 3 (0- and 1-lepton), 2, \geq 3 (2-lepton)			
p_{T}^{V} regions	75–150 GeV (2-lepton) > 150 GeV			
ΔR (jet 1, jet 2)	75 < p_{T}^{V} < 150 GeV: $\Delta R \leq 2.3$ 150 < p_{T}^{V} < 250 GeV: $\Delta R \leq 1.6$ p_{T}^{V} > 250 GeV: $\Delta R \leq 1.2$			
0 Lepton				
Trigger Leptons $E_{\mathrm{T}}^{\mathrm{miss}}$ $p_{\mathrm{T}}^{\mathrm{miss}}$ H_{T} $\min \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}) $ $ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, H) $ $ \Delta \phi(\mathrm{jet1}, \mathrm{jet2}) $ $ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) $ Trigger $\mathrm{Leptons}$ $E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$ $0\ loose\ leptons$ $> 150\ \mathrm{GeV}$ $> 30\ \mathrm{GeV}$ $> 120\ \mathrm{GeV}\ (2\ \mathrm{jets}), > 150\ \mathrm{GeV}\ (3\ \mathrm{jets})$ $> 20^{\circ}\ (2\ \mathrm{jets}), > 30^{\circ}\ (3\ \mathrm{jets})$ $> 120^{\circ}$ $< 140^{\circ}$ $< 90^{\circ}$ 1 Lepton $e\ \mathrm{sub\text{-}channel:}\ \mathrm{single}\ \mathrm{electron}$ $\mu\ \mathrm{sub\text{-}channel:}\ E_{\mathrm{T}}^{\mathrm{miss}}$ 1 $tight\ \mathrm{lepton}\ \mathrm{and}\ \mathrm{no}\ \mathrm{additional}\ loose\ \mathrm{leptons}$ $> 30\ \mathrm{GeV}\ (e\ \mathrm{sub\text{-}channel})$			
$m_{ m T}^W$	< 120 GeV 2 Lepton			
Trigger Leptons	single lepton 2 <i>loose</i> leptons Same flavour, opposite-charge for $\mu\mu$			
m_{ll}	$81 < m_{ll} < 101 \text{ GeV}$			

$VH(\rightarrow b\bar{b})$			
$WH(\rightarrow b\bar{b})$ normalisation	27%		
$ZH(\rightarrow b\bar{b})$ normalisation	25%		
Diboson			
WW/ZZ/WZ acceptance	10/5/12%		
$p_{\rm T}^V$ acceptance	4%		
$N_{\rm jet}$ acceptance	7 – 11%		
Z+jets			
Z+hf normalisation	Floating		
Z+mf normalisation	Floating		
Z+lf normalisation	Floating		
Z + bb to $Z + cc$ ratio	20%		
Z + bl to $Z + cl$ ratio	18%		
Z + bc to $Z + cl$ ratio	6%		
$p_{\rm T}^V$ acceptance	1 – 8%		
N_{iet} acceptance	1 - 37%		
High ΔR CR to SR	10 - 37% $12 - 37%$		
0- to 2-lepton ratio	4-5%		
•			
W+jets	Electing		
W+hf normalisation	Floating		
W+mf normalisation	Floating		
W+lf normalisation	Floating		
W + bb to $W + cc$ ratio	4 – 10 %		
W + bl to $W + cl$ ratio	31 – 32 %		
W + bc to $W + cl$ ratio	31 – 33 %		
$W \to \tau \nu(+c)$ to $W + cl$ ratio	11%		
$W \to \tau \nu(+b)$ to $W + cl$ ratio	27%		
$W \to \tau \nu(+l)$ to $W + l$ ratio	8%		
N _{jet} acceptance	8 – 14%		
High ΔR CR to SR	15 – 29%		
$W \rightarrow \tau \nu$ SR to high ΔR CR ratio	5 – 18%		
0- to 1-lepton ratio	1 – 6 %		
Top quark (0- and 1-lepton)			
top(b) normalisation	Floating		
top(other) normalisation	Floating		
$N_{\rm jet}$ acceptance	7 - 9%		
0- to 1-lepton ratio	4%		
SR/top CR acceptance $(t\bar{t})$	9%		
$SR/top\ CR\ acceptance\ (Wt)$	16%		
$Wt / t\bar{t}$ ratio	10%		
Top quark (2-lepton)			
Normalisation	Floating		
Multi-jet (1-lepton)			
Normalisation	20 - 100%		

Breakdown of uncertainties

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total	15.3	0.24	0.48	
Statistical	10.0	0.11	0.32	
Systematics		11.5	0.21	0.36
Statistical uncertainties	S			
Data statistics only		7.8	0.05	0.23
Floating normalisations		5.1	0.09	0.22
Theoretical and model				
$VH(\to c\bar{c})$		2.1	< 0.01	0.01
Z+jets		7.0	0.05	0.17
Top-quark	3.9	0.13	0.09	
W+jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
VH(o bar b)		0.8	< 0.01	0.01
Multi-Jet		1.0	0.03	0.02
Simulation statistics		4.2	0.09	0.13
Experimental uncertainties				
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{ m T}^{ m miss}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
	c-jets	1.6	0.05	0.16
Elavare ta a ain a	<i>b</i> -jets	1.1	0.01	0.03
Flavour tagging	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth-flavour tagging	ΔR correction	3.3	0.03	0.10
	Residual non-closure	1.7	0.03	0.10

Signal regions

Discriminant: m_{cc} of the two leading p_T jets

Signal:

VH(cc), VZ(cc), VW(cq)

Major backgrounds:

W+jets, Z+jets, Top

→ Constrained in dedicated control regions

Subdominant backgrounds:

VH(bb), VV background

V+jets background

- V+jets (split as W and Z+jets) split into flavours:
 - **V+hf:** V+cc,V+bb
 - **V+mf**: V+bc, V+bl, V+cl
 - V+I
- All V+jets normalisations floating in fit
- V+hf and V+mf floating normalisations determined with the help of a high ΔR_{cc} control region
- One ΔR_{cc} CR for each corresponding SR:
 - Low pTV: $2.3 < \Delta R_{cc} < 2.5$
 - Medium pTV: $1.6 < \Delta R_{cc} < 2.5$
 - High pTV: $1.2 < \Delta R_{cc} < 2.5$
- V+I floating normalisations determined in 0 c-tag
 CR and I and 2 lepton

High ΔR_{cc} control region

Maria Mironova 18/10/2021 24

Top background

- Top background: ttbar and single top
- Define top control region in 0 and I lepton channel by inverting b-veto on the 3rd jet
- Combine ttbar and Wt into floating normalisations split by flavour:
 - Top(bq): ttbar+Wt with dijet flavour bc, bl, bτ
 - → non-resonant
 - Top(lq): ttbar+Wt with dijet flavour cl, l
 - > resonant
- Top CR in 2 lepton → minor background, single-bin CR, with normalisation only

TopCR in 0 and 1 lepton

Maria Mironova 18/10/2021 25