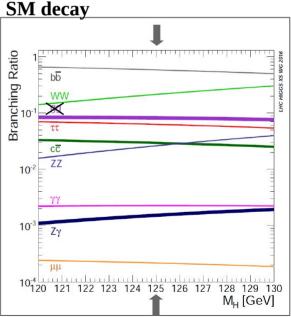

Combined measurements of Higgs boson production and decays with the ATLAS detector


Hannah Arnold (Nikhef) on behalf of the ATLAS collaboration

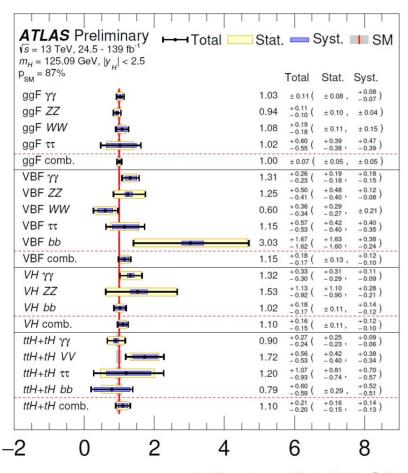
Introduction

- Since the Higgs boson discovery in 2012, many properties studied in particular its production and decay
- Most combinations of the dominant production times decay modes have been probed; also thanks to the wealth and high-quality of the *pp* data of LHC Run-2
- **Combinations** of the individual measurements allow to provide the **most precise measurements and most stringent constraints** on potential beyond-the-Standard Model (BSM) modifications with **minimal assumptions**

Outline

• Combined measurements of Higgs-boson production and decay (ATLAS-CONF-2021-053)

New for Higgs 2021


Global signal-strength / production cross section (× branching ratios)

See also Q. Buat's talk (Mo, 12:05; ATLAS: Wildcard)

- *Simplified Template Cross-Section* (STXS) measurement
 - Intermezzo: VH, $H \rightarrow bb$ combination (ATLAS-CONF-2021-051)
- Model-independent interpretation: couplings constraints in the κ *framework*
 - EFT interpretation discussed in C. Burgard's talk (Tue, 15:00; Parallel: EFT) and M. Battaglia's talk (Thu, 10:00, Plenary: EFT)
- Model-dependent interpretation in the *Two Higgs Doublet Model (2HDM)*
- Combination of searches for invisible Higgs-boson decays (<u>ATLAS-CONF-2020-052</u>) See also S. Snyder's talk (Wed 14.30 pm, Plenary: BSM)
- Combined (differential) cross-section measurement of $H \rightarrow yy$ and $H \rightarrow ZZ^* \rightarrow 4l$ (ATLAS-CONF-2019-032)

Combined Higgs boson measurements – last year

Last year's status – ICHEP 2020 ATLAS-CONF-2020-027

Analysis decay channel	Target Prod. Modes	\mathcal{L} [fb ⁻¹]	Ref.	Used in meas.	
$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139	[10]	Everywhere	ST
$H \rightarrow ZZ^*$	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139	[11]	Everywhere	L
$H \to ZZ$	$t\bar{t}H$ excl. $H \rightarrow ZZ^* \rightarrow 4\ell$	36.1	[16, 18]	Sec. 5 & 7	
$H \to WW^*$	ggF, VBF	36.1	[12]	Sec. 5 % 7	
$n \to vv vv$	$t\overline{t}H$	30.1	[16, 18]	sec. 5 & 7	Everywhere Everywhere Sec. 5 & 7 Sec. 5 & 7 Sec. 5 & 7 Sec. 5 & 7 Everywhere Sec. 5 & 7 Everywhere Sec. 7 & Sec. 7 Sec. 7 & Sec. 7
$H \to \tau \tau$	ggF, VBF	36.1	[13]	Coo 5 % 7	
	$t\overline{t}H$	30.1	[16, 18]	sec. 5 & 7	
	VBF	24.5 – 30.6	[15]	Sec. 5 & 7	
$H \to b \bar b$	WH, ZH	139	[14]	Everywhere	
	$t\overline{t}H$	36.1	[17, 18]	Sec. 5 & 7	Sec. 5
$H \rightarrow \mu\mu$	ggF, VBF, VH, t t H	139	[19]	Sec. 7.4	
$H \rightarrow inv$	VBF	139	[20]	Sec. 7.3 & 7.5	S
					Ť

(×BR)

pling on IIIIIEIF

Lots happened since then

– will discuss in the following the **new results** and *highlight* differences to this preliminary result where relevant

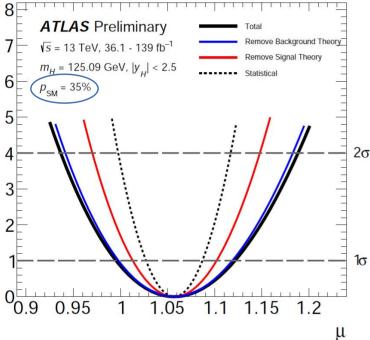
Combined Higgs boson measurements – this year

ATLAS Preliminary Total \sqrt{s} = 13 TeV, 36.1 - 139 fb Stat. Syst $m_{\mu} = 125.09 \text{ GeV}$ Fotal uncertainties greatly reduced (-50-80%) $p_{SM} = 79\%$ ggF yy ggF ZZ ggF WW ggF TT ggF+ttH uu VBF yy VBF ZZ **VBF WW** VBF TT VBF+ggF bb VBF+VH μμ VH γγ VH 77 VH ττ WH bb ZH bb ttH+tH yy ttH+tH WW ttH+tH 77 ttH+tH TT ttH+tH bb

2

 $\sigma \times B$ normalised to SM

Input	analyses


ATLAS-CONF-2021-053

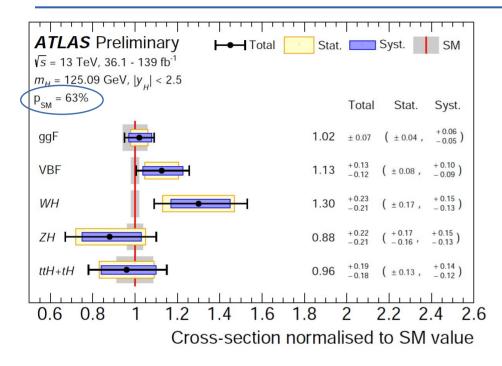
LA3-COM-2021-033	LAS-CONF-2021-053	1
------------------	-------------------	---

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]	Ref.	Used in combined measurement
$H \to \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139	[10]	Everywhere
77*	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139	[11]	Everywhere
$H \rightarrow ZZ^*$	$t\bar{t}H$ excl. $H \rightarrow ZZ^* \rightarrow 4\ell$	36.1	[18]	Everywhere but STXS and SMEFT
$H \to WW^*$	ggF, VBF	139	[12]	Everywhere
	t ī H	36.1	[18]	Everywhere but STXS and SMEFT
$H \to \tau \tau$	ggF, VBF, WH, ZH, ttH	139	[13]	Everywhere
	t t H	36.1	[18]	Everywhere but STXS and SMEFT
	WH,ZH	139	[14, 15]	Everywhere
$H \to b\bar{b}$	VBF	126	[16]	Everywhere
	$t\overline{t}H$	139	[17]	Everywhere
$H \to \mu\mu$	ggF, VBF, VH, t t H	139	[19]	Everywhere but STXS and SMEFT
$H \to Z\gamma$	ggF, VBF, VH, ttH	139	[20]	Everywhere but STXS and SMEFT
$H \rightarrow inv$	VBF	139	[21]	Sec. 6.3 & 6.5

- All analyses use **full Run-2 dataset** (except ttH(→ mult. Leptons))
 - Systematic uncertainties start to dominate (!)
- $H \rightarrow Zy$ and VH/ttH($\rightarrow \tau\tau$) included for the first time
- Improved analysis techniques and more granular kinematic categorisation targeting stage 1.2 STXS measurement
 - e.g. \geq 2-jet category in ggF, $H \rightarrow WW^*$; more bins at high $p_{T}(V/H)$ in $VH/ttH(\rightarrow bb)$

$$\mu_{if} = \frac{\sigma_i}{\sigma_i^{\text{SM}}} \times \frac{B_f}{B_f^{\text{SM}}}$$

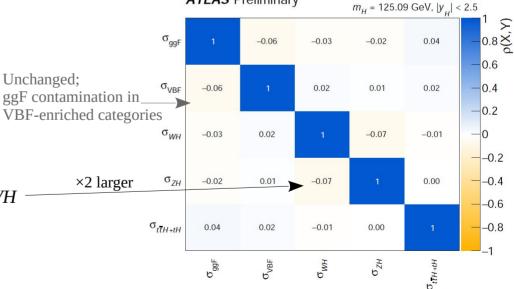
Signal strength for *production mode i* and *final state f*


Assume same signal strength for all $i \times f$

$$\mu = 1.06 \pm 0.06 = 1.06 \pm 0.03 \text{ (stat.)} \pm 0.03 \text{ (exp.)} \pm 0.04 \text{ (sig. th.)} \pm 0.02 \text{ (bkg. th.)}$$

- Central value ~unchanged
- **Total unc. reduced by** ~**10**% → mainly because of increase in analysed data (in H → WW* and H → $\tau\tau$)
 - Signal theory → largest source of uncertainties
- Good agreement with **SM expectation**

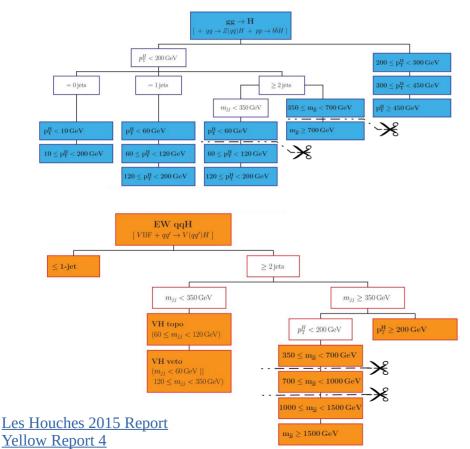
Production cross-sections

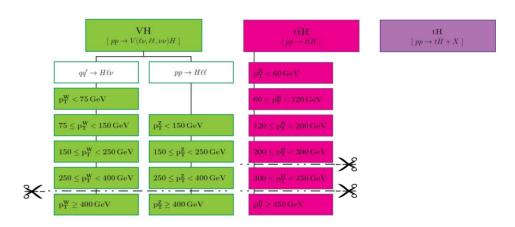


- ...for the main production modes
- **Assumption**: SM branching ratios (→ *fixed*)
- Each mode measured with <~20% precision
 - Total unc. on VBF production reduced by ~30%

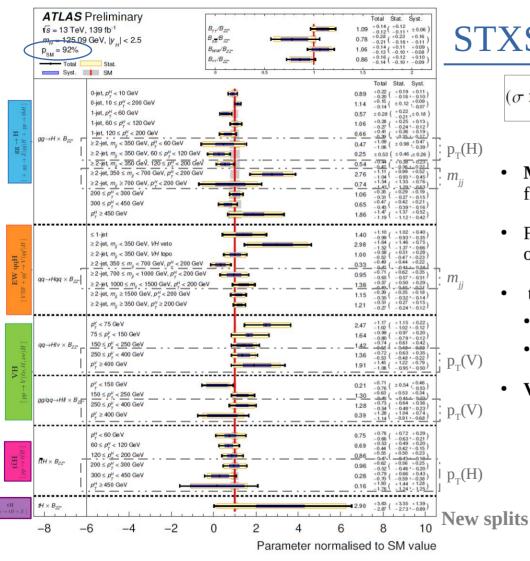
ATLAS Preliminary

• In general, reduced correlations (< 10%)


- Increased difference between WH and ZH cross-sections mainly due to $H \rightarrow WW^*$ and (new) $H \rightarrow \tau\tau$ only sensitive to VH (due to limited data stat.)
- Good agreement with SM expectation

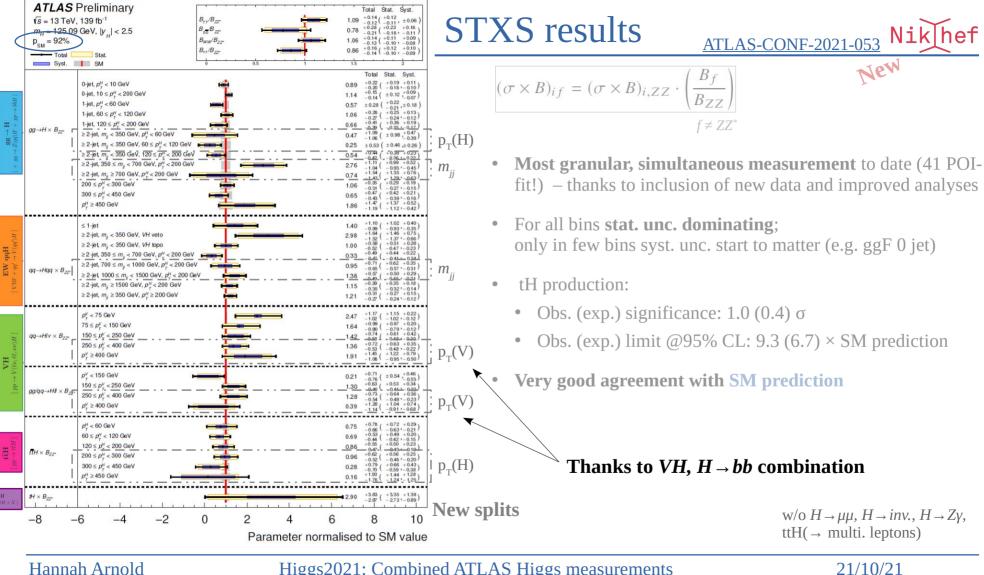

 $\sqrt{s} = 13 \text{ TeV}$. 36.1 - 139 fb⁻¹

Simplified Template Cross-Sections → Higgs cross-section measurements per production mode


in exclusive kinematic regions

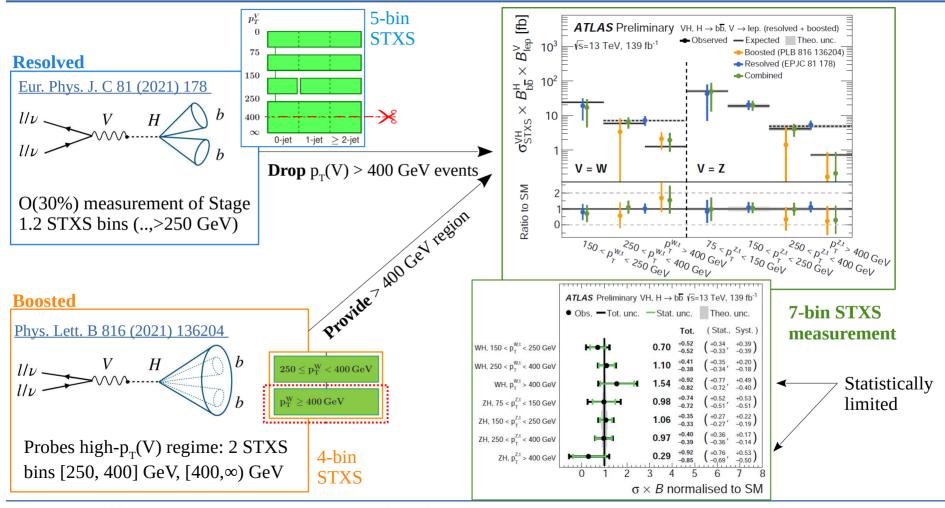
= newly introduced splits

Some "dashed" bins split, some bins merged relative to Stage 1.2 scheme


STXS results

$$(\sigma \times B)_{if} = (\sigma \times B)_{i,ZZ} \cdot \left(\frac{B_f}{B_{ZZ}}\right)$$
$$f \neq ZZ$$

- Most granular, simultaneous measurement to date (41 POI-fit!) thanks to inclusion of new data and improved analyses
- For all bins **stat. unc. dominating**; only in few bins syst. unc. start to matter (e.g. ggF 0 jet)
- tH production:
 - Obs. (exp.) significance: $1.0 (0.4)\sigma$
 - Obs. (exp.) limit @95% CL: 9.3 (6.7) × SM prediction
- Very good agreement with SM prediction


w/o $H \rightarrow \mu\mu$, $H \rightarrow inv.$, $H \rightarrow Z\gamma$, ttH(\rightarrow multi. leptons)

Intermezzo: VH, $H \rightarrow bb$ combination

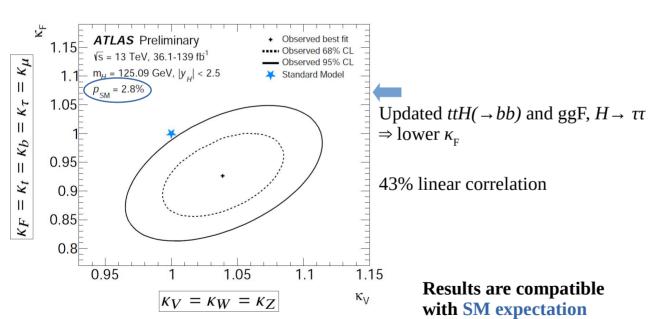
Interpretation in the κ framework

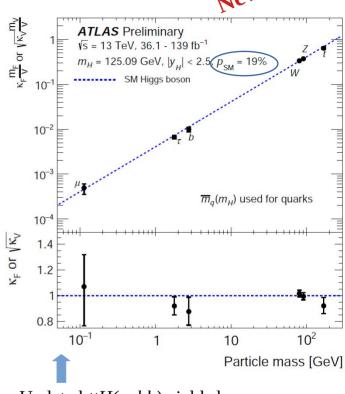
Assumption: BSM physics modifies only the strength of the Higgs-boson coupling

 \Rightarrow assign (effective) **coupling-strength modifiers** κ to leading-order diagrams of Higgs-boson production and decay

Modifier of the *Higgs-boson total width*

$$\kappa_H^2(\kappa, B_{\rm i.}, B_{\rm u.}) = \frac{\sum_j B_j^{\rm SM} \kappa_j^2}{(1 - B_{\rm i.} - B_{\rm u.})}$$


$$B_{\rm i./u.}: \text{ branching ratio of invisible/}$$
undetected BSM decays


Different scenarios are considered with varying levels of assumptions

Interpretation: couplings to SM particles

General assumptions

- Only decays to SM particles $(B_{i.} = B_{u.} = 0)$
- Only SM particles contribute to loops; loops are resolved
- $\kappa_{c/s}$ scales as $\kappa_{t/b}$; $\kappa_{u/d/e} = 1$
- All κ 's are positive

Updated $ttH(\rightarrow bb)$ yields lower κ_b \Rightarrow lower κ_{μ} (due to smaller contribution to $\Gamma_{\rm H}$)

Obs. (exp.) significance on κ_{μ} : 2.1 (1.7) σ

General assumptions

- *Effective* coupling strength to photons, gluons and Zy (new!)
 - All other loop-induced processes are resolved
- All κ 's are positive
- $\kappa_{c/c}$ scales as $\kappa_{t/b}$; $\kappa_{u/d/c} = 1$

In loops

$$\kappa_g = 1.00 \pm 0.05$$

 $\kappa_{\gamma} = 1.06 \pm 0.05$

$$\kappa_{Z\gamma} = 1.43^{+0.31}_{-0.38}$$
.

All other κ 's are fixed to 1

 $\kappa_g = 1.00 \pm 0.05$ • Only decays to SM particles ($B_i = B_u = 0$)

Obs. (exp.) sign.: 2.2 (1.1) σ

SM consistency: $p_{SM} = 36\%$

In loops and decays

$$\kappa_g = 0.98 \pm 0.06$$

$$\kappa_{\gamma} = 1.06 \pm 0.05$$

$$\kappa_{Z\gamma} = 1.43^{+0.31}_{-0.37}$$

$$B_{\rm i.} < 0.14$$
 at 95% CL

$$B_{\rm u.} < 0.15$$
 at 95% CL.

• VBF, $H \rightarrow inv$. included to constrain invisible BSM decays B_i

Undetected BSM decays constrained from processes not involving loops

SM consistency: $p_{SM} = 60\%$

Interpretation: probing BSM contributions

- 68% CL

- 95% CL

General assumptions

- *Effective* coupling strength to photons, gluons and Zy (new!)
 - All other loop-induced processes are resolved
- All κ 's are positive
- $\kappa_{c/c}$ scales as $\kappa_{t/b}$; $\kappa_{u/d/c} = 1$

lifted

Fitted

 K_{τ}

 K_{II}

 K_{a}

 κ_{t} < 0 excluded at 4.3 σ

(from tH and $gg \rightarrow ZH$)

All other κ 's are fixed to 1

In loops

$$\kappa_g = 1.00 \pm 0.05$$
 $\kappa_{\gamma} = 1.06 \pm 0.05$

$$\kappa_{\gamma} = 1.06 \pm 0.03$$

$$\kappa_{Z\gamma} = 1.43^{+0.31}_{-0.38}.$$

• Only decays to SM particles $(B_1 = B_2 = 0)$

Obs. (exp.) sign.: 2.2 (1.1) σ

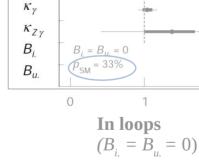
SM consistency: $p_{SM} = 36\%$

In loops and decays

$$\kappa_g = 0.98 \pm 0.06$$

$$\kappa_{\gamma} = 1.06 \pm 0.05$$

$$\kappa_{Z\gamma} = 1.43^{+0.31}_{-0.37}$$

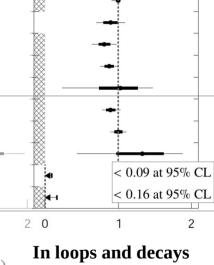

$$B_{\rm i.} < 0.14$$
 at 95% CL

 $B_{\rm u.}$ < 0.15 at 95% CL

• VBF, $H \rightarrow inv$. included to constrain invisible BSM decays B_1

Undetected BSM decays constrained from processes not involving loops

SM consistency: $p_{SM} = 60\%$



ATLAS Preliminary

 \sqrt{s} = 13 TeV, 36.1 - 139 fb⁻¹

 $m_H = 125.09 \text{ GeV}, |y_{IJ}| < 2.5$

SM consistency: $p_{SM} = 33\%$

- VBF, $H \rightarrow inv$. included to constrain B
- $\kappa_{W(Z)} \leq 1$ to constrain B_{u}
- $B_{u} > 0$

Model-dependent interpretation: 2HDM

Benchmark model for UV-complete BSM theory

- Extended Higgs sector $(2^{nd} SU(2) doublet) \rightarrow 5 Higgs boson$
- **Light CP-even Higgs boson** *h* identified with **observed Higgs boson**
 - SM production and decay modes
 - Deviations from SM prediction expressed in terms of α and $\tan \beta$
 - α : mixing angle between two CP-even Higgs bosons (h, H)
 - $tan\beta$: ratio of the vevs of the two SU(2) doublets

Four 2HDM types w/o tree-level FCNCs

- different couplings to up/down-type quarks and leptons

Coupling		N	Model	
modifiers	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
${\mathcal E}_h^d$	$\cos \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$
$=\xi_h^l$	$\cos \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$	$-\sin \alpha /\cos \beta$	$\cos \alpha / \sin \beta$

2HDM interpretation: results

---- Expected 95%CL

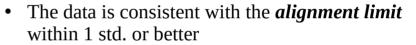
Observed 95%CL

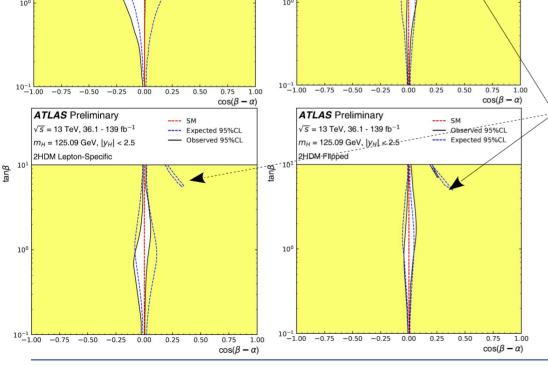
ATLAS Preliminary

2HDM Type-II

 \sqrt{s} = 13 TeV. 36.1 - 139 fb⁻¹

 $m_H = 125.09 \text{ GeV}, |y_H| < 2.5$




$$H_{\rm SM} = h \cdot \sin(\beta - \alpha) + H \cdot \cos(\beta - \alpha).$$

$$cos(\beta - \alpha) = 0$$
 alignment limit

 $\rightarrow h$ indistinguishable from $H_{\rm SM}$

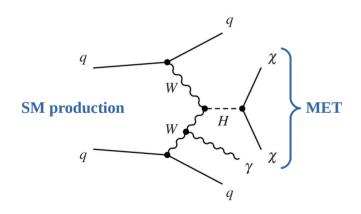
"petal" allowed regions: some fermion couplings have the same *magnitude* as in the SM, but the opposite sign

No surprises: the observed Higgs boson is SM-like

ATLAS Preliminary

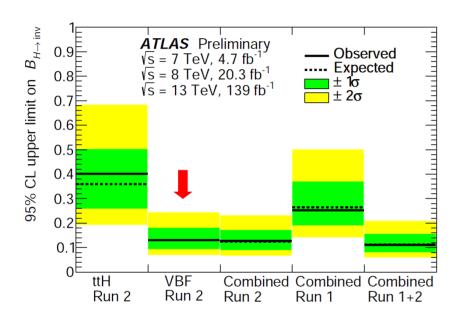
2HDM Type-I

 $\sqrt{s} = 13 \text{ TeV}$. 36.1 - 139 fb⁻¹


 $m_H = 125.09 \text{ GeV}, |V_H| < 2.5$

---- Expected 95%CL

Observed 95%CI

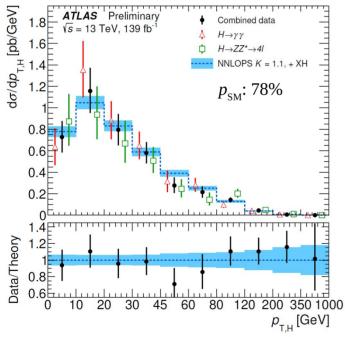

$H \rightarrow invisible$

- "Invisible" = missing transverse momentum (MET)
- **In the SM**, $H \rightarrow invisible$ is from $H \rightarrow ZZ^* \rightarrow 4v BR = 0.1\%$
- In Higgs portal models, $H \rightarrow invisible$ contributions arise from $H \rightarrow XX$; X: dark matter (DM) particle, e.g. WIMPs

$H \rightarrow inv.$: Partial Run 2 (+Run 1) combination _{ATLAS-CONF-2020-052}

Run-1 combination 'inputs': VBF, $Z(\rightarrow ll)H$, $V(\rightarrow had.)H$

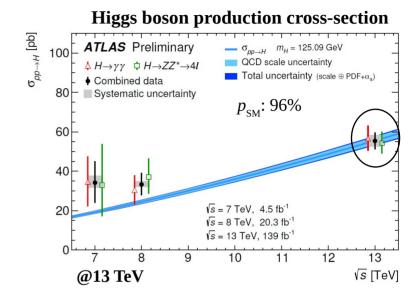
Run 2 'inputs': VBF, $H \rightarrow inv$.; ttH (0/2 lepton) [reinterpretation of SUSY/DM searches]


Observed (expected) upper limit @95% CL on B($H \rightarrow inv$.):

- Run 2 combination: 0.13 (0.12+0.05-0.04)
- Run 1+2 combination: 0.11 (0.11+0.04-0.03)
- → Dominated by VBF channel

Three new 'inputs' ready: VBF+y [EXOT-2021-17], ZH [ATLAS-CONF-2021-029], mono-jet [Phys. Rev. D 103 (2021) 112006]

- Input analyses: $H \rightarrow yy$ and $H \rightarrow ZZ^* \rightarrow 4l$ using full Run-2 dataset
- Assumes SM predictions for branching fractions and acceptances


Higgs boson differential cross-section as function of $p_{T}(H)$

~20% precision per bin (except highest bin)

Stat. unc. dominating

Finer binning in $H \rightarrow yy$, but same bin boundaries \rightarrow respective bins are combined with a single $H \rightarrow ZZ^* \rightarrow 4l$ bin

- **Combination:** 55.4+4.3-4.2 pb
 - ~8% precision
 - Stat. and syst. unc. of the same order
- **Prediction**: 55.6±2.5 pb

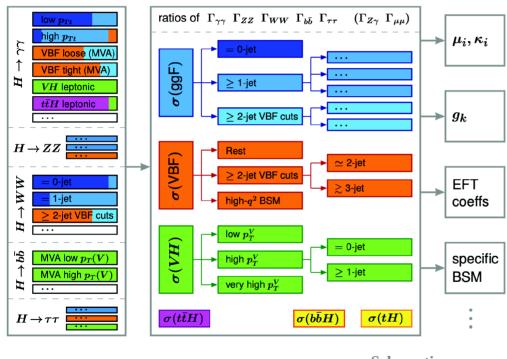
Results are in **good agreement** with each other and the **SM prediction**

Summary & conclusion

- Combinations of individual Higgs-boson production and decay measurements provide unprecedented precision and reduced assumptions in interpretations
- Almost all input analyses use the full Run-2 dataset; new channels are explored and analysis improvements implemented
- Presented most granular STXS measurement to date in particular, new bins at high $p_T(V/H)$ promise improved constraints in EFT interpretations
- In general, results show very good agreement with the SM expectation
- More data is coming...

BACKUP

This year's input analyses



Analysis improvements relative to ICHEP 2020

- $H \rightarrow WW^*$: \geq 2-jet category in ggF
- $H \rightarrow \tau \tau$:
 - boosted ggF: more granular binning (reco p_T(H), #jets)
 - VBF: improved selection through MVA
- $H \rightarrow bb$:
 - VH: inclusion of *boosted categories* \rightarrow more granular $p_{\tau}(V)$ binning
 - VBF: improved analysis strategy (ANN, bkg. control regions, ...)
 - ttH: introduction of reco p_T(H) binning

Simplified Template Cross-Sections: common framework for **Higgs cross-section measurements per production mode** in exclusive kinematic regions

Schematic

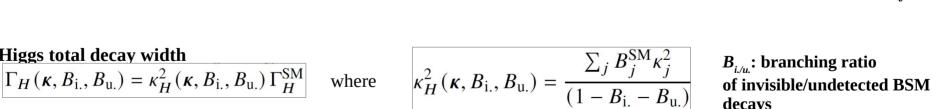
- Minimize theory dependence
 - theory uncertainties can evolve with time for different phase-space regions
- Isolate regions where BSM effects are predicted to appear enhanced
- Maximise the experimental sensitivity
 by allowing use of e.g. MVAs
- Simplify combination of measurements in different decay channels

How: Signal predictions per STXS 'bins' provide **templates** that are simultaneously fit to the data

- evolves in 'stages' with increasing granularity and precision: 1.0, 1.1, 1.2,...

к framework

To study modifications of the *strength* of the Higgs-boson couplings related to BSM physics


Assigns (effective) **coupling-strength modifiers** κ to leading-order diagrams of production and decay processes, assuming *factorisation*

$$\sigma_i \times B_f = \frac{\sigma_i(\kappa) \times \Gamma_f(\kappa)}{\Gamma_H}$$

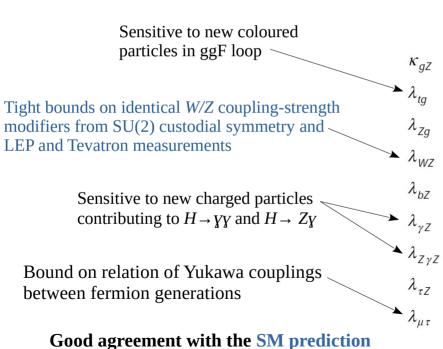
Higgs total decay width

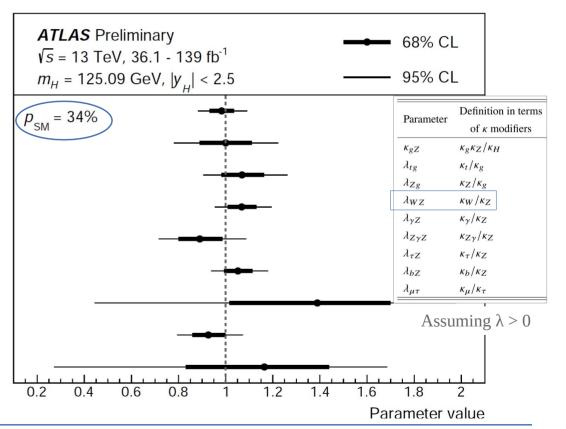
• **Cross-sections** σ_i and **partial decay width** Γ_i for SM process j:

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_i^{\text{SM}}}$$
 or $\kappa_j^2 = \frac{\Gamma_j}{\Gamma_i^{\text{SM}}}$ $\kappa_j = 1$ is the **SM prediction**

decays

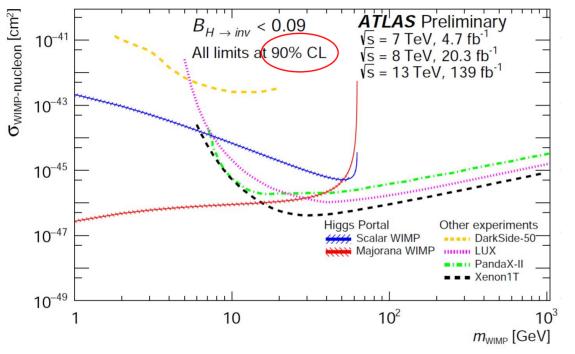
 \Rightarrow **BSM contributions** may manifest themselves as $\kappa_i \neq 1$ or $B_{i,lu} \neq 0$


 B_{μ} Can't be directly constrained by measurements \rightarrow **extracting** κ_{μ} **and** B_{μ} **simultaneously requires assumptions**


Production cross section	Loops	Main interference	Effective	Resolved modifier	к framework	N
$\sigma(ggF)$		t-b	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$	K ITallic WOLK	N
$\sigma(VBF)$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$	Daramatriantions	
$\sigma(qq/qg \to ZH)$	_		-	κ_Z^2	Parametrisations	
$\sigma(gg \to ZH)$	~	t-Z	K(ggZH)	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t - 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$		
$\sigma(WH)$	-	_	-	κ_W^2		
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2		
$\sigma(tHW)$	-	t-W	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$		
$\sigma(tHq)$	-	t-W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$		
$\sigma(b\bar{b}H)$	-		-	κ_b^2		
Partial decay width				-		
Γ^{bb}			-	κ_b^2		
Γ^{WW}	-	-	120	κ_W^2		
Γ^{gg}	~	<i>t</i> – <i>b</i>	κ_g^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$		
$\Gamma^{\tau\tau}$	-	-	-	κ_{τ}^2		
Γ^{ZZ}	-		-	κ_Z^2		
Γ^{cc}	-		-	$\kappa_c^2 (= \kappa_t^2)$		
				$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$		
$\Gamma^{\gamma\gamma}$	~	t-W	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$		
				$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$		
$\Gamma^{Z\gamma}$	~	t-W	$\kappa^2_{(Z\gamma)}$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$		
Γ^{ss}	-	_	-	$\kappa_s^2 (= \kappa_b^2)$		
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2		
Total width $(B_i = I)$	$B_{\rm u.} = 0$					
Γ_H	~		κ_H^2	$\begin{aligned} &0.581\kappa_b^2 + 0.215\kappa_W^2 + 0.082\kappa_g^2 \\ &+ 0.063\kappa_\tau^2 + 0.026\kappa_Z^2 + 0.029\kappa_c^2 \\ &+ 0.0023\kappa_\gamma^2 + 0.0015\kappa_{(Z\gamma)}^2 \\ &+ 0.0004\kappa_s^2 + 0.00022\kappa_\mu^2 \end{aligned}$		
Hannah Arno	ld		I	Higgs2021: Combined ATLAS	Higgs measurements	21/10/21

Ratios of coupling modifiers

- Independent of assumptions on the Higgs-boson total width
 - With global scale factor determined by $gg \rightarrow H \rightarrow ZZ^*$
 - **Most model-independent** interpretation within the κ framework



$H \rightarrow invisible$ combination: DM interpretation ATLAS-CONF-2020-052 Nik

In the context of Higgs-portal models and comparison to **direct DM detection experiments**

Translation of upper limit on B($H \rightarrow inv$.) (@90% CL) into limit on (spin-independent) **WIMP**nucleon scattering cross-section via an EFT approach

→ the regions *above* the limit contours are excluded

→ DM searches at the LHC and direct detection experiments are complementary