Measurements of Higgs boson production in decays to two τ leptons with the ATLAS detector

FRANK SAUERBURGER on behalf of the ATLAS Collaboration October 21, 2021

Run: 299584 Event: 901388344 2016-05-20 17:40:04 CESI

Motivation

[ATLAS-CONF-2020-027]

Spontaneous symmetry breaking and Yukawa interaction

$$\mathscr{L} \subset -rac{\sqrt{2}m_{ au}}{v} \left[(ar{m{v}}_{ au}\,ar{m{\tau}})_L \phi\,m{ au}_R + ar{m{ au}}_R \phi(m{v}_{ au}\,m{ au})_L
ight]
ight.
onumber \ au \lesssim -m_{ au}\,ar{m{ au}}\,m{ au} = m{ au}_L \phi\,m{ au}_R + ar{m{ au}}_R \phi(m{v}_{ au}\,m{ au})_L
ight]$$

 $\begin{array}{c} -i\frac{m_{\tau}}{v} & \tau \\ H \\ --- & \tau \end{array}$

UNI FREIBURG

Introduction

Background modelling Machine learning

October 21, 2021

Production modes

Analysis targets four *H* production modes

BURG

Introduction

Analysis categories

[ATLAS-CONF-2021-044]

Analysis categories

[ATLAS-CONF-2021-044]

Introduction

Background modelling

Machine learning

Analysis categories

[ATLAS-CONF-2021-044]

BURG

ZW

Background modelling

Machine learning

Background composition

Dominant backgrounds

Z ightarrow au au

- Monte Carlo simulation
- 70% overall, up to 90% in boosted
- Normalization from dedicated, embedded Control Regions

Misidentified τ

- Data-driven estimation
- Тор
 - Monte Carlo simulation
 - Dedicated Control Regions

Signal region composition with $100 \,\text{GeV} < m_{\tau\tau}^{\text{MMC}} < 150 \,\text{GeV}$

Introduction Background modelling

Machine learnin

Simplified embedding procedure

Motivation

Phase space mismatch between SR ($Z \rightarrow \tau \tau$) and CR ($Z \rightarrow \ell \ell$)

 \rightarrow How to define matching CR?

Procedure In control region

- **Select** $Z \rightarrow \ell \ell$ events
- Unfold l reconstruction, identification and isolation effects
- 3 Scale p_{ℓ} by parametrized τ decay effects
- 4 Reweight to account for efficiencies

Introduction

BURG

Background modelling

Machine learning

Simplified embedding procedure

Procedure In control region

- **1** Select $Z \rightarrow \ell \ell$ events
- Unfold l reconstruction, identification and isolation effects
- 3 Scale p_ℓ by parametrized τ decay effects
- Reweight to account for efficiencies

Introduction

BURG

Background modelling

Machine learning

Simplified embedding procedure

- Kinematic distribution in embedded τ_{lep} τ_{had} selection
- Event selection in CR with embedded quantities
- $Z \rightarrow \ell \ell$ events assigned to exactly one channel
- Data-MC comparison in CR to normalize $Z \rightarrow \tau \tau$ (MC) SR
- Reduced extrapolation uncertainties

UNI FREIBURG

Introduction

Background modelling

Machine learning

Data-driven estimation of misidentified τ

 $au_{\text{lep}} au_{\text{had}}$ and $au_{\text{had}} au_{\text{had}}$

- Jets misidentified as τ_{had}
- Background estimated with fake factor method

$$N_{\mathsf{fake}}^{\mathsf{SR}} = (N_{\mathsf{Data}}^{\mathsf{anti-}\tau} - N_{\mathsf{MC}, \ \mathsf{no} \ \mathsf{jet}}^{\mathsf{anti-}\tau}) \times \mathscr{F}$$

 $au_e au_\mu$

- Misidentified leptons
- Data-driven matrix method

$$(N_{\text{tight/loose}}) = [\text{eff. matrix}](N_{\text{real/fake}})$$

For all channels Assign uncertainties O(5 - 30%)

October 21, 2021

BURG

Background modelling

Machine learning

Missing mass calculator

- At least two neutrinos in the final state
- Individual contributions to E^{miss} not measured
- Perform likelihood scan using angles between measured particles and E^{miss}_T
- Find most probable Higgs boson mass m_{MMC}
- Most important discriminant

Introduction

Background modelling

Machine learning

Machine learning

VBF tagger

- Targeting VBF topology (two forward jets)
- Rejecting:
 ggF and $Z \rightarrow \tau \tau$
- Trained on jet kinematics

VH tagger

- Reject non-VH production modes
- Trained on jet and Higgs kinematics
- Targeted signal frac .:

October 21, 2021

94% in VBF 1

8

Data

66% in VH 1

Introduction

Background modelling

Machine learning

Machine learning

- BDTs for *ttH*
 - Employ two BDTs
 - Reject tt and $Z \rightarrow \tau \tau$ background
 - Trained on jet, τ, H and E^{miss} properties
 - Define ttH_1 with rectangular cuts
 - ttH signal fraction in ttH_1: 92%

FREIBURG

Introduction

Background modelling

Machine learning

Measured cross sections

Measurements for different Pols

- Total cross section
- Cross section per production mode
- 9 bins of STXS stage 1.2 3
- Results are in agreement with the SM

Total Cross section

 $(\sigma \times BR)^{obs} = 2.90 \pm 0.21(\text{stat})^{+0.37}_{-0.22}(\text{syst}) \text{ pb}$

Total

0.5

Ω

 $\tau_e \tau_u$

 $\tau_{l}\tau_{had}$

 $\tau_{had} \tau_{had}$

Comb.

-Stat.

ATLAS Preliminary $H \rightarrow \tau \tau$ $\sqrt{s} = 13$ TeV, 139 fb⁻¹

Theo.

|y_µ| < 2.5

(Stat., Svst.)

 $\begin{pmatrix} +0.25 & +0.32 \\ -0.24 & -0.33 \end{pmatrix}$

 $\begin{pmatrix} +0.10 & +0.16 \\ -0.10 & -0.13 \end{pmatrix}$

(+0.10 +0.15)

+0.07 +0.12

3.5

3 $(\sigma \times B)^{\text{meas}} / (\sigma \times B)^{\text{SM}}$

Tot.

0.42 +0.41

0.92 +0.18

0.97 +0.17

0.92 +0.13

2

2.5

1.5

Results

BURG

Measured cross sections

Measurements for different Pols

- Total cross section
- Cross section per production mode
- 3 9 bins of STXS stage 1.2

Results are in agreement with the SM

Observation of VBF process at 5.3σ

Introduction Background mod

BURG

Machine learning

Results

October 21, 2021

Frank Sauerburger – Measurements of $H \rightarrow \tau \tau$ with the ATLAS detector

Measured cross sections

STXS measurement

Measurement in 9 bins of STXS stage 1.2

UNI FREIBURG

> ntroduction Background modellir

Machine learning

Conclusion

 \oslash Total measured H
ightarrow au au cross section

 $2.90 \pm 0.21(\text{stat}) {}^{+0.37}_{-0.32}(\text{syst}) \,\text{pb}$

- Inclusion of four production modes
- \oslash Observation of VBF H
 ightarrow au au at 5.3 σ
- \odot Improved precision[†] from 27% to 14%
- STXS measurements in 9 bins
- Results in agreement with SM
- More precise measurements in future with refined analysis techniques and Run 3 dataset

Introduction Background mod Machine learning Results

BURG

[†] wrt. Phys. Rev. D **99**,072001 (2019)

October 21, 2021

Backup

Signal region composition

Signal region composition with $100 \,\text{GeV} < m_{\tau\tau}^{\text{MMC}} < 150 \,\text{GeV}$

BURG

Expected signal

Expected signal purity

ATLAS Simulation Preliminary $fs = 13 \text{ TeV}, 139 \text{ fb}^{-1}, H \rightarrow \tau\tau$

October 21, 2021

200

180

160

140

120

100

- 80

- 60

- 40

-20

Systematic uncertainties

- Largest systematic uncertainties from signal theory uncertainties (8.1%)
- Largest experiemntal uncertainty (4.2%)

BURG

Fit structure

- Normalization of Top background from Top control regions
- Normalization of $Z \rightarrow \tau \tau$ from kinematically embedded $Z \rightarrow \ell \ell$

BURG

N

Signal correlation

BURG

IREI

Partial Run 2 dataset

[Phys. Rev. D 99,072001 (2019)]

BURG