The \mathcal{CP} character of the Higgs–fermion interactions: interplay of collider physics, EDMs and baryogenesis

Henning Bahl

in collaboration with P. Bechtle, E. Fuchs, S. Heinemeyer, J. Katzy, M. Menen,

K. Peters, M. Saimpert, G. Weiglein

DESY, Hamburg

Higgs 2021

20.10.2021, online

Intro	EDM & BAU	
•••		

Introduction

LHC constraints

Complementarity with EDM and baryogenesis constraints

Conclusions

Intro		EDM & BAU	
•••	00000	000	0

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ► New sources of CP violation are necessary to explain the baryon asymmetry of the Universe,
- ▶ one possibility: CP violation in the Higgs sector with Higgs boson being CP-admixed state,
- ▶ most BSM theories predict largest CP violation in Higgs–fermion couplings,
- $\blacktriangleright~\mathcal{CP}$ violation in the Higgs sector can be constrained by
 - collider constraints,
 - electric dipole measurements (EDMs),
 - successful explanation of the baryon asymmetry of the Universe (BAU).

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ► New sources of CP violation are necessary to explain the baryon asymmetry of the Universe,
- ▶ one possibility: CP violation in the Higgs sector with Higgs boson being CP-admixed state,
- ▶ most BSM theories predict largest CP violation in Higgs–fermion couplings,
- $\blacktriangleright~\mathcal{CP}$ violation in the Higgs sector can be constrained by
 - collider constraints,
 - electric dipole measurements (EDMs),
 - successful explanation of the baryon asymmetry of the Universe (BAU).

Goal of present study

Assess LHC constraints on $\mathcal{CP}\text{-violating Higgs-fermion}$ interactions and evaluate complementarity with EDM and BAU constraints.

Intro	EDM & BAU	
00		

Effective model

▶ Yukawa Lagrangian (generated e.g. by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}f_R$ operator in SMEFT),

$$\mathcal{L}_{\mathsf{yuk}} = -\sum_{f=u,d,c,s,t,b,e,\mu,\tau} \frac{y_f^{\mathsf{SM}}}{\sqrt{2}} \overline{f} \left(c_f + i\gamma_5 \widetilde{c}_f \right) f \mathcal{H}.$$

- optional: additional free parameter $c_V \rightarrow$ rescaling HVV couplings
- ▶ did not include *CP*-odd *HVV* operators,
- ▶ SM: $c_f = 1$, $\tilde{c}_f = 0$, $c_V = 1$.

Study different simplified models:

- single flavour modification,
- common modification for 2nd and 3rd generation,

 $(c_{f_3}=c_{ au}=c_{t}=c_{b},~\tilde{c}_{f_3}=...,~c_{f_2}=c_{\mu}=c_{c}=c_{s},~\tilde{c}_{f_2}=...)$

common modification of all Higgs-fermion coupling, (c_f = c_e = ... = c_t = c_b, č_f = ...)

	LHC constraints	EDM & BAU	
00	00000	000	0

LHC constraints — setup

Most relevant observables:

- Higgs production (ggH, ZH, tTH, tH, tWH)
- Higgs decays $(H \rightarrow f\bar{f}, \gamma\gamma, gg)$,

experimental input:

- all relevant Higgs measurements:
 - Higgs signal-strength measurements,
 - ZH STXS measurements (p_T shape),
 - CMS $H \rightarrow \tau \tau CP$ analysis [2110.04836],
 - did not include dedicated experimental top-Yukawa CP analyses (difficult to reinterpret in other model),
- if available, included all uncertainty correlations,
- ▶ χ^2 fit performed using HiggsSignals.

	LHC constraints	EDM & BAU	
00	0000	000	0

Single flavour modifications

▶ Strongest constraints on top-Yukawa coupling originating from ggH and $H \rightarrow \gamma\gamma$,

- ▶ $H \rightarrow \tau \tau$ are in contrast relatively model independent,
- difficult to disentangle c_b and \tilde{c}_b .

LHC constraints	EDM & BAU	
00000		

Impact of CMS $H \rightarrow \tau \tau \ CP$ analysis

Left: fit result without CMS $H \rightarrow \tau \tau \ CP$ analysis.

Right: fit result with CMS ${\it H} \rightarrow \tau \tau ~ {\cal CP}$ analysis.

- Decay width $\Gamma_{H o au au} \propto c_{ au}^2 + ilde{c}_{ au}^2$,
- CMS $H \rightarrow \tau \tau \ CP$ analysis disentangles c_{τ} and \tilde{c}_{τ} .

LHC constraints	EDM & BAU	
00000		

Modification of 2nd and 3rd generation Yukawas

- 3rd generation constraints dominated by top-Yukawa constraints,
- ▶ 2nd generation constraints dominated by $H \rightarrow \mu\mu$ constraints.

LHC constraints	EDM & BAU	
00000		

Global modification

Constraints dominated by 3rd generation constraints,

▶ setting $c_V = c_f = c_{f,V}$ (mixing with pseudoscalar) yields second region at negative $c_{V,f}$.

		EDM & BAU	
00	00000	000	0

EDM and BAU constraints

EDM:

- \blacktriangleright Several EDMs are sensitive to \mathcal{CP} violation in the Higgs sector,
- we consider only constraints from theoretically cleanest EDM
 the electron EDM (aEDM)
 - the electron EDM (eEDM),
- eEDM evaluated using results from [Brod et al.,1310.1385,1503.04830].

BAU:

- different techniques used in the literature to calculate baryon asymmetry $Y_B \rightarrow$ large theoretical uncertainty,
- ▶ we use benchmark model for bubble wall properties maximising Y_B → values should be regarded as an upper bound,
- evaluation based on simple fit formula. [Shapira,2106.05338]

	EDM & BAU	
	000	

Single flavour modifications

- Only CP violation in tau-Yukawa coupling able to explain substantial amount of BAU while still satisfying eEDM and LHC constraints,
- sizeable CP violation in bottom-Yukawa coupling still possible but very small contribution to BAU,
- ▶ eEDM places very strong constraints on CP-violating top-Yukawa coupling; very similar for global modification (floating c_f and \tilde{c}_f).

	EDM & BAU	
	000	

Dependence on electron-Yukawa coupling

- ► eEDM $d_e/d_e^{exp} \approx 854c_e\tilde{c}_t + 1082\tilde{c}_ec_V 610\tilde{c}_ec_t + \dots$,
- hardly any collider constraints on c_e and \tilde{c}_e ,
- cancellation between electron and top contributions to eEDM possible,
- ▶ allows for substantial contribution of CP-violating top-Yukawa coupling to BAU.

		EDM & BAU	Conclusions
00	00000	000	•

Conclusions

Initial question

How well can one constrain \mathcal{CP} violating Higgs–fermion–fermion interactions using collider, EDM and BAU constraints?

- Used effective Lagrangian with generalized Yukawa interactions,
- global fit to all relevant LHC data:
 - included total and differential XS measurements as well as dedicated $H \rightarrow \tau \tau \ C P$ analysis,
 - first and second generation couplings only weakly constrained,
 - strongest constraints on top- and tau-Yukawa couplings.
- complementarity with EDM and BAU constraints:
 - eEDM puts stringent constraints on \mathcal{CP} violation in the Higgs sector,
 - eEDM constraints, however, strongly depend on the electron-Yukawa coupling,
 - \mathcal{CP} violation in the tau-Yukawa coupling most promising for explaining BAU.

		EDM & BAU	Conclusions
00	00000	000	•

Conclusions

Initial question

How well can one constrain \mathcal{CP} violating Higgs–fermion–fermion interactions using collider, EDM and BAU constraints?

- Used effective Lagrangian with generalized Yukawa interactions,
- global fit to all relevant LHC data:
 - included total and differential XS measurements as well as dedicated $H \rightarrow \tau \tau \ C P$ analysis,
 - first and second generation couplings only weakly constrained,
 - strongest constraints on top- and tau-Yukawa couplings.
- complementarity with EDM and BAU constraints:
 - eEDM puts stringent constraints on \mathcal{CP} violation in the Higgs sector,
 - eEDM constraints, however, strongly depend on the electron-Yukawa coupling,
 - \mathcal{CP} violation in the tau-Yukawa coupling most promising for explaining BAU.

Thanks for your attention!