

## Constraints on H(inv) Decays From CMS

Alp Akpinar Boston University

Higgs 2021 Conference October 20, 2021

## H(inv) Searches in CMS

 $H \rightarrow inv$  searches with Run2 data are done in CMS through several channels:



### **Crucial to have precise estimations of backgrounds:**

Make use of dedicated control regions

(e.g. Z(ll) + jets)

Simultaneous fit with all control and signal regions Precise estimation of dominant backgrounds in **signal region** 

(e.g.  $Z(\nu\nu) + jets$ )

### H(inv) Searches in CMS

 $H \rightarrow inv$  searches with Run2 data are done in CMS through several channels:



### Monojet + Mono-V: Strategy

Signal signature:

One energetic & central jet

 $+ p_T^{miss} > 250 \, GeV$ 

Veto any other  $e, \mu, \tau, \gamma$  + b-jets

jets being selected:

**Monojet**  $\rightarrow$  AK4 jet +  $p_T^{miss}$ 

**Mono-V**  $\rightarrow$  AK8 jet +  $p_T^{miss}$ 

High  $p_T^{miss}$ CMS Experiment at the LHC, CERN CMS MET. pt = 1691.82 GeV Data recorded: 2018-Jul-14 21:03:24 EDT eta = 0 phi = 1.726 Run / Event / LS: 319639 / 1418428259 / 986 Two categories mainly differ on the eta = 0.08phi = -1.37

Energetic jet

### Monojet + Mono-V: Strategy

High  $p_T^{miss}$ CMS Experiment at the LHC, CERN MET. pt = 1691.82 GeV Data recorded: 2018-Jul-14 21:03:24 EDT eta = 0 phi = 1.726 Run / Event / LS: 319639 / 1418428259 / 986

Energetic jet



 $+ p_T^{miss} > 250 \ GeV$ 

Signal signature:

Veto any other  $e, \mu, \tau, \gamma$  + b-jets

Two categories mainly differ on the jets being selected:

**Monojet**  $\rightarrow$  AK4 jet  $+ p_T^{miss}$ **Mono-V**  $\rightarrow$  AK8 jet  $+ p_T^{miss}$ 

Details on the next slide

### **Monojet + Mono-V: Categories**

Categories based on properties of the tagged jet:

DeepAK8 score of the tagged fat jet:

Softdrop mass of the tagged AK8 jet:



### **Monojet + Mono-V: Categories**

Categories based on properties of the tagged jet:



Mono-V Low/High Purity: Categorized by the DeepAK8 score of the jet Softdrop mass of the tagged AK8 jet:



### **Monojet + Mono-V: Categories**

Categories based on properties of the tagged jet:



Events failing the mono-V selection are considered for monojet category

## **Monojet + Mono-V: Bkg Estimation**

Signal signature:

 $+ p_T^{miss} > 250 \, GeV$ 

jets being selected:

#### arXiv:2107.13021



#### **Background estimation:**

Estimate main backgrounds with a simultaneous fit of signal region and 5 control regions:

 $1e/\mu$ ,  $2e/\mu$ ,  $\gamma + jets$ 



**Mono-V** 

### Monojet + Mono-V: Results Monojet



# **No signal observation:** Results are interpreted as exclusion limits on $B(H \rightarrow inv)$ (amongst other interpretations!)

#### arXiv:2107.13021

## **Monojet + Mono-V: Results**

#### With monojet and mono-V combined:

Reaching to 28% (25%) obs. (exp.) exclusion limit on  $B(H \rightarrow inv)$ 



1.9x (1.6x) improvement in obs. (exp.) limits compared to previous result for the same channel

Most stringent limits from this channel up to date!

### **Monojet + Mono-V: Results**



Reaching to 28% (25%) obs. (exp.) exclusion limit on  $B(H \rightarrow inv)$ 



1.9x (1.6x) improvement in obs. (exp.) limits compared to previous result for the same channel

Most stringent limits from this channel up to date!

### $\rightarrow$ Further interpretations in the reference

#### arXiv:2107.13021

#### **DM Interpretation**

Exclusion limits are calculated as a function of DM and mediator (spin-1) masses:



excluded for low  $m_{DM}$ 

### H(inv) Searches in CMS

 $H \rightarrow inv$  searches with Run2 data are done in CMS through several channels:



#### Eur. Phys. J. C (2021) 81:13





#### Eur. Phys. J. C (2021) 81:13

WZ process with a lost lepton





## Mono- $Z(\ell \ell)$ : Bkg Estimation



**Signature:** Two  $e/\mu$ from Z decay +  $p_T^{miss}$ 

### **Background estimation:**

- Set up dedicated control regions
- $\rightarrow$  Use a maximum-likelihood fit across all regions to get the final yields in the SR



Use control regions to estimate WZ,ZZ and DY backgrounds in the signal region

## Mono- $Z(\ell \ell)$ : Results

### Events in signal region are further divided into 0-jet and 1-jet categories:

(take different S/B ratios into account, details in backup)



## Mono- $Z(\ell \ell)$ : Results

### Events in signal region are further divided into 0-jet and 1-jet categories:

(take different S/B ratios into account, details in backup)



 $\rightarrow$  Results interpreted as exclusion limits on  $B(H \rightarrow inv)$ 

(amongst other interpretations!)



Limits on  $B(H \rightarrow inv)$ :

29% observed & 25% expected

 $\approx 1.7x$  improvement over the previous CMS results for mono-Z!



### H(inv) Searches in CMS

 $H \rightarrow inv$  searches with Run2 data are done in CMS through several channels:



## **VBF H(inv): Event Selection (Online)**



Two sets of triggers are used for two data taking categories:

- MTR:  $p_T^{miss}$  triggered category, target  $p_T^{miss} > 250 \ GeV$
- VTR (new in 17+18): VBF triggered category, target events @ lower  $p_T^{miss}$

 $\rightarrow$  VTR improves the sensitivity by  $\approx 8\%$ 

## VBF H(inv): Strategy



CMS-PAS-HIG-20-003

(13 TeV)

**CMS** Simulation Preliminary

## VBF H(inv): Strategy



#### CMS-PAS-HIG-20-003

Dedicated control regions to estimate  $Z(\nu\nu), W(\ell\nu)$ backgrounds in signal region:



H(inv) Results from CMS - Alp Akpinar

#### CMS-PAS-HIG-20-003

## **VBF H(inv): Data vs Bkg. Predictions**

Data & background estimation in signal region:



**HF Noise:** New HF noise estimate in 17+18

See the VBF talk by Nicholas Wardle

No excess of data over background predictions are observed in either category

 $\rightarrow$  Put constraints on  $B(H \rightarrow inv)$ 

## **VBF H(inv): Results**

### Exclusion limits on $B(H \rightarrow inv)$ :



### Statistical combination with HIG-17-023:

Expected sensitivity: 11%, observed: 17%

 $\rightarrow$  Best single-channel sensitivity to date!

10/20/21

## **VBF H(inv): Results**

### Exclusion limits on $B(H \rightarrow inv)$ :



### Statistical combination with HIG-17-023:

Expected sensitivity: 11%, observed: 17%

 $\rightarrow$  Best single-channel sensitivity to date! H(inv) Results from CMIS - Alp Akpinar 10/20/21

### **DM** Interpretation

### Can compare the results with direct detection:

Exclusion on  $B(H \rightarrow inv) \rightarrow$  Exclusion on  $\sigma_{DM}$ 



## Summary

An overview of the H(inv) searches from CMS through different channels:

✓ VBF, monojet + mono-V, mono-Z

# Improvements with full Run2 data for all channels:

✓ Obs. (exp.) exclusion limit reaches to 17% (11%) with VBF



## Summary

An overview of the H(inv) searches from CMS through different channels:

✓ VBF, monojet + mono-V, mono-Z

# Improvements with full Run2 data for all channels:

- ✓ Obs. (exp.) exclusion limit reaches to 17% (11%) with VBF
- ✓ **Monojet + mono-V** → 1.9x improvement in obs. limits, 28% observed limit



## Summary

An overview of the H(inv) searches from CMS through different channels:

✓ VBF, monojet + mono-V, mono-Z

# Improvements with full Run2 data for all channels:

- ✓ Obs. (exp.) exclusion limit reaches to 17% (11%) with VBF
- ✓ **Monojet + mono-V** → 1.9x improvement in obs. limits, 28% observed limit
- ✓ **Mono-Z** → 1.7x improvement from previous CMS results, 29% observed limit

### ttH & combinations $\rightarrow$ Ongoing



## Backup

### **Higgs Production Modes: XS**

Order of magnitude XS for the *H* production modes:







(c) Associated Production W/Z



(d) Associated Heavy Quark Production

Gluon fusion  $\rightarrow$  Largest XS compared to all  $\sigma_{ggH} \approx 10 \times \sigma_{VBF}$  Second largest XS after gluon fusion  $\sigma_{VBF} \approx 4 \ pb$ 

 $\sigma_{VH} \sim O(1 \, pb) \qquad \sigma_{ttH} \sim O(1 \, pb)$ 

Largest XS: ggH **Highest sensitivity:** VBF due to specific topology

### **VBF: Updates From 2016 Analysis**

Updates from HIG-17-023 in the 2017+2018 VBF analysis:

- Addition of photon CR
- ✓ Inclusion of VBF triggered category (**VTR**) for  $p_T^{miss} \in [160, 250] GeV$

 $\rightarrow$  In addition to the MET+MHT triggered category (MTR)

- ✓ Addition of HF cleaning cuts
- $\rightarrow$  The first time we had access to **HF-HF events!**

### ✓ NLO EWK correction on VBF H(inv) signal





### **Monojet: Year Separated Results**

Monojet signal region, shown with 2017 and 2018 data separately:



### **Mono-V: All Results**



#### Good agreement between data and bkg predictions after the fit

### Mono-Z: 0-jet & 1-jet Categories

#### Eur. Phys. J. C (2021) 81:13

#### Event yields in the two categories of the mono-Z signal region:

**Table 3** Observed number of events and post-fit background estimates in the two jet multiplicity categories of the SR. The reported uncertainty represents the sum in quadrature of the statistical and systematic components

| Process                | 0-jet category | 1-jet category |                         |
|------------------------|----------------|----------------|-------------------------|
| Drell–Yan              | $502 \pm 94$   | 1179 ± 64      |                         |
| WZ                     | $1479 \pm 53$  | $389 \pm 16$   |                         |
| ZZ                     | $670\pm27$     | $282\pm13$     | Post-fit yields + total |
| Nonresonant background | $384 \pm 31$   | $263\pm22$     | post-fit uncertainties  |
| Other background       | $6.3\pm0.7$    | $6.8\pm0.8$    | on the backgrounds      |
| Total background       | $3040\pm110$   | $2120\pm76$    | U                       |
| Data                   | 3053           | 2142           |                         |

**0-jet category:** Larger contribution from diboson processes

1-jet category: Larger contribution from DY

→ Overall, larger # of background events from 0-jet category