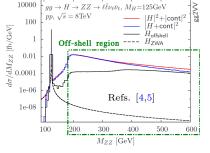
Evidence for off-shell Higgs boson production and the measurement of its width

Mostafa Mahdavikhorrami 1,2 on behalf of the CMS collaboration


¹ Université Libre de Bruxelles and IIHE ² University of Antwerp

October 20, 2021


$H \rightarrow ZZ \rightarrow 2\ell 2\nu$ analysis (HIG-21-013)

- In this analysis (Analysis PAS: HIG-21-013) we study the off-shell Higgs production in H → ZZ → 2ℓ2ν signal channel (ggH and VBF) where ℓ = e, μ. The analysis is based on Data collected by CMS experiment during LHC run 2 (2016-2018) at √s = 13 TeV and with integrated luminosity of ~ 138fb⁻¹.
- Goals:
 - Measuring of signal strength parameters $(\mu^{\text{off-shell}}, \mu_{\text{F}}^{\text{off-shell}}, \mu_{\text{V}}^{\text{off-shell}}) \Rightarrow \text{off-shell } 2\ell 2\nu$ results are combined with 4ℓ off-shell analysis [1]
 - Measuring $\Gamma_{\rm H}$ and constraining anomalous couplings strengths $(f_{ai}) \Rightarrow$ off-shell $2\ell 2\nu$ results are combined with 4ℓ on-shell analyses [2,3].

- $qq \rightarrow ZZ(WZ)$ backgrounds (simulation + 3ℓ WZ CR)
- Instrumental $p_{\rm T}^{\rm miss}$ from DY (data-driven + γ CR)
- Nonresonant backgrounds (data-driven + $e\mu$ CR)
- Other minor backgrounds (simulation)

*** MELA = Matrix Element Likelihood Analysis, CR = Control Region, DY = Drell-Yan ***

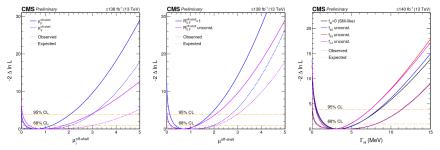


Figure 1: Observed (solid) and expected (dashed) likelihood scans for $\mu_{\rm F}^{\rm off-shell}$ or $\mu_{\rm V}^{\rm off-shell}$ (left), $\mu^{\rm off-shell}$ (middle), and $\Gamma_{\rm H}$ (right). Scans for $\mu_{\rm F}^{\rm off-shell}$ (blue) and $\mu_{\rm V}^{\rm off-shell}$ (magenta) are obtained with the other parameter unconstrained. Those for $\mu^{\rm off-shell}$ are shown with (blue) and without (magenta) the constraint $R_{\rm V,F}^{\rm off-shell} = 1$. Constraints on $\Gamma_{\rm H}$ are shown with and without anomalous HVV couplings. The horizontal lines indicate the 68% and 95% CL regions.

Summary of results

Table 1: Summary of results on the off-shell signal strength and $\Gamma_{\rm H}$. Results for $\mu^{\rm off-shell}$ are with $R_{\rm V,F}^{\rm off-shell}$ either unconstrained or = 1. Constraints on $\mu_{\rm F}^{\rm off-shell}$ and $\mu_{\rm V}^{\rm off-shell}$ are shown with the other signal strength unconstrained. Results for $\Gamma_{\rm H}$ (in units of MeV) are obtained with the on-shell signal strengths unconstrained. Tests with anomalous HVV couplings are distinguished by the denoted on-shell cross section fractions. The expected values (not shown) are either unity or $\Gamma_{\rm H} = 4.1$ MeV. The abbreviation 'c.v.' stands for 'central value', and the abbreviation '(u)' stands for 'unconstrained'.

Param.	Cond.	Observed		Expected	
		c.v.	68% 95% CL	68% 95% CL	
$\mu_{\mathrm{F}}^{\mathrm{off.}}$	$\mu_{\rm V}^{\rm off.}$ (u)	0.62	[0.17, 1.3] [0.0060, 2.0]	$[2 \cdot 10^{-5}, 2.1] \mid < 3.0$	
$\mu_{ m V}^{ m off.}$	$\mu_{ m F}^{ m off.}$ (u)	0.90	$[0.31, 1.8] \mid [0.051, 2.9]$	$[0.11, 3.0] \mid < 4.5$	
$\mu^{\mathrm{off.}}$	$R_{\mathrm{V,F}}^{\mathrm{off.}} = 1$	0.74	$[0.36, 1.3] \mid [0.13, 1.8]$	$[0.16, 2.0] \mid [0.0086, 2.7]$	
	$R_{V,F}^{off.}(u)$	0.62	[0.17, 1.3] [0.0061, 2.0]	$[4 \cdot 10^{-5}, 2.1] \mid [1 \cdot 10^{-5}, 3.0]$	
$\Gamma_{ m H}$	SM-like	3.2	$[1.5, 5.6] \mid [0.53, 8.5]$	$[0.62, 8.1] \mid [0.035, 11.3]$	
$\Gamma_{\rm H}$	$f_{a2}(u)$	3.4	$[1.6, 5.7] \mid [0.60, 8.4]$	$[0.52, 8.0] \mid [0.015, 11.3]$	
$\Gamma_{ m H}$	$f_{a3}(u)$	2.7	$[1.3, 4.8] \mid [0.47, 7.3]$	$[0.53, 8.0] \mid [0.015, 11.3]$	
$\Gamma_{\rm H}$	$f_{\Lambda 1}$ (u)	2.7	$[1.3, 4.8] \mid [0.46, 7.2]$	$[0.55, 8.1] \mid [0.019, 11.3]$	

Results interpretations on BSM HVV couplings

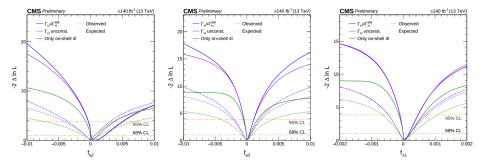


Figure 6: Shows the likelihood scans of f_{a2} (left), f_{a3} (middle), and f_{Λ_1} (right) are shown with the constraint $\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$ (blue), $\Gamma_{\rm H}$ unconstrained (violet), or based on on-shell 4 ℓ only (green). Observed (expected) scans are shown with solid (dashed) curves. The horizontal lines indicate the 68% and 95% CL regions.

Backup

Table 2: Comparisons between the number of observed events in the $2\ell 2\nu$ channel with expectations from the SM and no–off-shell scenarios as a function of N_j for low and high m_T^{ZZ} . An additional requirement of $p_T^{\text{miss}} \ge 200 \text{ GeV}$ has been imposed for $N_j \ge 2$.

	$m_{\mathrm{T}}^{\mathrm{ZZ}}$	$N_j = 0$	Nj = 1	$N_j \ge 2$
SM	$< 450{\rm GeV}$	$1118\substack{+45 \\ -49}$	660^{+31}_{-40}	92^{+7}_{-8}
No off.	$< 450{\rm GeV}$	$1127\substack{+46 \\ -49}$	666^{+31}_{-40}	93^{+7}_{-8}
Data	$< 450{\rm GeV}$	989	643	95
SM	$\geq 450{ m GeV}$	241^{+13}_{-14}	166^{+10}_{-12}	68^{+5}_{-6}
No off.	$\geq 450{\rm GeV}$	252^{+14}_{-14}	$178\substack{+10 \\ -13}$	75^{+5}_{-6}
Data	$\geq 450{ m GeV}$	217	151	66

Sensitivity of off-shell $2\ell 2\nu$ channel, CMS

Table 4: Constraints on the $\mu_{\rm F}^{\rm eff-shell}$, $\mu_{\rm V}^{\rm off-shell}$, and $\mu_{\rm off-shell}^{\rm off-shell}$ parameters are summarized. The constraints on $\mu^{\rm off-shell}$ are obtained with $R_{\rm V,F}^{\rm off-shell}$ unconstrained or = 1. The measurements are presented using the $2\ell 2\nu$ analysis alone, or with the inclusion of off-shell 4ℓ events. The designation 'c.v.' stands for the central value obtained in the likelihood scan, and the expected central value is always unity, so it is not quoted explicitly.

Parameter	Condition	Observed c.v. 68% 95% CL		Expected 68% 95% CL	
$\mu_{ m F}^{ m off-shell}$ (2 ℓ 2 $ u$ + 4 ℓ)	$\mu_{ m V}^{ m off-shell}$ unconst.	0.62	[0.17, 1.3] [0.0060, 2.0]	$[2 \cdot 10^{-5}, 2.1] \mid < 3.0$	
$\mu_{ m F}^{ m off-shell}$ (2 ℓ 2 $ u$)	$\mu_{\rm V}^{\rm off-shell}$ unconst.	0.41	[0.014, 1.4] < 2.6	< 2.5 < 3.7	
$\mu_{ m V}^{ m off-shell}$ (2 ℓ 2 $ u$ + 4 ℓ)	$\mu_{\rm F}^{ m off-shell}$ unconst.	0.90	[0.31, 1.8] [0.051, 2.9]	[0.11, 3.0] < 4.5	
$\mu_{ m V}^{ m off-shell}$ (2 ℓ 2 $ u$)	$\mu_{\rm F}^{\rm off-shell}$ unconst.	1.1	[0.28, 2.4] [0.016, 3.8]	[0.07, 3.2] < 4.8	
$\mu^{\text{off}-\text{shell}}$	$R_{\rm V,F}^{\rm off-shell} = 1$	0.74	[0.36, 1.3] [0.13, 1.8]	[0.16, 2.0] [0.0086, 2.7]	
$(2\ell 2\nu + 4\ell)$	$R_{V,F}^{off-shell}$ unconst.	0.62	$[0.17, 1.3] \mid [0.0061, 2.0]$	$[4 \cdot 10^{-5}, 2.1] \mid [1 \cdot 10^{-5}, 3.0]$	
$\mu^{ m off-shell}$ $(2\ell 2 u)$	$R_{V,F}^{off-shell} = 1$ $R_{V,F}^{off-shell}$ unconst.	0.74 0.41	$[0.25, 1.5] \mid [0.043, 2.3]$ $[0.014, 1.4] \mid [2 \cdot 10^{-5}, 2.6]$	$\begin{matrix} [0.11, 2.3] \mid [2 \cdot 10^{-4}, 3.2] \\ [3 \cdot 10^{-5}, 2.5] \mid [6 \cdot 10^{-6}, 3.7] \end{matrix}$	

Table 10: Summary of allowed 68% CL (central values with uncertainties) and 95% CL (in square brackets) intervals for $\mu_{\rm V}^{\rm off-shell}$, $\mu_{\rm V}^{\rm off-shell}$, and $\mu_{\rm V}^{\rm off-shell}$ obtained from the analysis of the combination of Run 1 and Run 2 off-shell data sets.

Parameter	Observed	Expected
$\mu^{\text{off-shell}}$	$0.78^{+0.72}_{-0.53}$ $[0.02, 2.28]$	$1.00^{+1.20}_{-0.99}$ [0.0, 3.2]
$\mu_{ m F}^{ m off-shell}$	$0.86^{+0.92}_{-0.68} \ [0.0, 2.7]$	$1.0^{+1.3}_{-1.0} \ [0.0, 3.5]$
$\mu_{ m V}^{ m off-shell}$	$0.67^{+1.26}_{-0.61} \ [0.0, 3.6]$	$1.0^{+3.8}_{-1.0} \ [0.0, 8.4]$

arXiv:1901.00174

Table 2: The 95% CL upper limits on $\mu_{\text{off-shell}}$, $\Gamma_H/\Gamma_H^{\text{SM}}$ and R_{gg} . Both the observed and expected limits are given. The 1σ (2σ) uncertainties represent 68% (95%) confidence intervals for the expected limit. The upper limits are evaluated using the CL_s method, with the SM values as the alternative hypothesis for each interpretation.

		Observed	Expected			
		Observed	Median	$\pm 1 \sigma$	$\pm 2 \sigma$	
$\mu_{ ext{off-shell}}$	$ZZ \rightarrow 4\ell$ analysis	4.5	4.3	[3.3, 5.4]	[2.7, 7.1]	
	$ZZ \rightarrow 2\ell 2\nu$ analysis	5.3	4.4	[3.4, 5.5]	[2.8, 7.0]	
	Combined	3.8	3.4	[2.7, 4.2]	[2.3, 5.3]	
$\Gamma_H/\Gamma_H^{\rm SM}$	Combined	3.5	3.7	[2.9, 4.8]	[2.4, 6.5]	
R _{gg}	Combined	4.3	4.1	[3.3, 5.6]	[2.7, 8.2]	

arXiv:1808.01191v2

Most of the systematics affect both the shape and normalization

- Theoretical uncertainties:
 - Renormalization scale and Factorization scale (up to 30%)
 - $\alpha_S(m_Z)$ and PDF variations (up to 20%)
 - Simulation of the second jet in gg samples (up to 20%)
 - Scale and tune variations of PYTHIA
 - NLO EW correction $(q\bar{q} \rightarrow ZZ, WZ)$
 - Uncorrelated uncertainties on $N_j = 0$ (2.7%), $N_j = 1$ (6.0%) and $N_j \ge 2$ (7.6%) in $q\bar{q} \rightarrow ZZ, WZ$ derived from the 3ℓ CR
- Instrumental uncertainties on the simulations:
 - Luminosity (between 1.2% and 2.5%, depending on the data taking period)
 - L1 prefiring scale
 - Pile-up, JES, JER and $p_{\rm T}^{\rm miss}$ resolution correction
 - Uncertainties in lepton, trigger, pile-up jet identification, and b-tagging efficiencies (typically 1% per lepton)

Statistical uncertainties on simulations are also taken into account.