Prospects of Higgs self-coupling measurements at the ILC using ILD detector

Taikan Suehara
(Kyushu University)

On behalf of ILD group
International Linear Collider Project

- e^+e^- linear collider to be built in Japan
- Higgs factory (250 GeV) starting at 2035-2040
 - Beam polarization (e^-: 80%, e^+: 30% expected)
 - 2 ab$^{-1}$, similar physics potential with FCCee (by polarization)
- Upgradable by increasing tunnel length and accelerating gradient

<table>
<thead>
<tr>
<th>Energy</th>
<th>Physics</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 GeV</td>
<td>Top threshold</td>
<td>Better surface treatment (up to \sim50 MV/m)</td>
</tr>
<tr>
<td>\sim500 GeV</td>
<td>Higgs self coupling (ZHH)</td>
<td>Thin-film superconductor (up to \sim100 MV/m)</td>
</tr>
<tr>
<td>\sim1 TeV</td>
<td>Higgs self coupling ($\nu\nu$HH)</td>
<td></td>
</tr>
<tr>
<td>Up to a few TeV</td>
<td>BSM search (eg. TeV Wino)</td>
<td></td>
</tr>
<tr>
<td>30 TeV</td>
<td>?</td>
<td>Plasma accelerator? (\sim1 GV/m)</td>
</tr>
</tbody>
</table>
ILD detector

• International Large Detector (ILD)
 - One of two detector concepts for ILC

• Particle flow concept
 - Separate particles in jets by highly-segmented calorimeters

• Key subsystems
 - Monolithic vertex detector
 - TPC + silicon tracker
 - High granular calorimeter (silicon/scintillator ECAL, scintillator/RPC HCAL)

Unprecended performance by precise particle imaging
 - b/c tagging, momentum resolution, jet energy resolution...
Higgs self coupling and baryogenesis

$V(\eta_H) = \frac{1}{2} m_H^2 \eta_H^2 + \lambda v \eta_H^4 + \frac{1}{4} \lambda \eta_H^4$

λ determines the quadratic term of Higgs potential
\rightarrow Unique probe for structure of vacuum

Electroweak baryogenesis requires strong 1st order EW transition
\rightarrow In the two-Higgs doublet models, λ positively deviates by >20
\rightarrow should be an experimental target
Higgs self-coupling at ILC

\[\sqrt{s} = 500 \text{ GeV}: \; e^+e^- \rightarrow ZHH \]

\[\sqrt{s} \geq 1 \text{ TeV}: \; e^+e^- \rightarrow \nu_e\bar{\nu}_eHH \]

Extremely low cross section: \(\mathcal{O}(100 \text{ ab}) \)

Taikan Suehara, Higgs2021 online, 20 Oct. 2021 page 5
Decay channels

- **dominant channels covered for ZHH @ 500 GeV**

<table>
<thead>
<tr>
<th>Z decay mode</th>
<th>HH decay mode</th>
<th>BranchingRatio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \to e^+e^-$</td>
<td>$HH \to bbbb$</td>
<td>1.1%</td>
</tr>
<tr>
<td>$Z \to \mu^+\mu^-$</td>
<td>$HH \to b\bar{b}b\bar{b}$</td>
<td>1.1%</td>
</tr>
<tr>
<td>$Z \to v^+\bar{v}$</td>
<td>$HH \to b\bar{b}b\bar{b}$</td>
<td>6.7%</td>
</tr>
<tr>
<td>$Z \to b\bar{b}$</td>
<td>$HH \to b\bar{b}b\bar{b}$</td>
<td>5.0%</td>
</tr>
<tr>
<td>$Z \to q\bar{q}$</td>
<td>$HH \to b\bar{b}b\bar{b}$</td>
<td>17%</td>
</tr>
<tr>
<td>$Z \to b\bar{b}$</td>
<td>$HH \to b\bar{b}W^W^, WW^* \to 4q$</td>
<td>1.7%</td>
</tr>
<tr>
<td>$Z \to c\bar{c}$</td>
<td>$HH \to b\bar{b}W^W^, WW^* \to 4q$</td>
<td>1.4%</td>
</tr>
<tr>
<td>$Z \to b\bar{b}$</td>
<td>$HH \to b\bar{b}W^W^, WW^* \to l\nu 2q$</td>
<td>1.1%</td>
</tr>
<tr>
<td>$Z \to c\bar{c}$</td>
<td>$HH \to b\bar{b}W^W^, WW^* \to l\nu 2q$</td>
<td>0.92%</td>
</tr>
<tr>
<td>$Z \to l^+l^-$</td>
<td>$HH \to b\bar{b}W^W^, WW^* \to 4q$</td>
<td>0.76%</td>
</tr>
<tr>
<td>$Z \to l^+l^-$</td>
<td>$HH \to b\bar{b}W^W^, WW^* \to l\nu 2q$</td>
<td>0.50%</td>
</tr>
</tbody>
</table>

Table 1: signal channels analysed for $e^+e^- \to ZHH$ at $\sqrt{s} = 500$ GeV.

(for $e^+e^- \to vvHH@1$TeV: $HH \to bbbb/bbWW^*$ are covered)
Result of full simulation studies

- results (example individual channels)

<table>
<thead>
<tr>
<th>ZHH channel</th>
<th>s (HH \rightarrow bbbb)</th>
<th>b</th>
<th>σ_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>eeHH</td>
<td>3.9 ± 0.03 (2.6)</td>
<td>7 ± 0.6</td>
<td>1.29σ</td>
</tr>
<tr>
<td>$\mu\mu HH$</td>
<td>5.1 ± 0.03 (2.8)</td>
<td>9 ± 0.5</td>
<td>1.48σ</td>
</tr>
<tr>
<td>$\nu\nu HH$</td>
<td>5.6 ± 0.04 (5.5)</td>
<td>7 ± 1.0</td>
<td>1.78σ</td>
</tr>
<tr>
<td>bbHH</td>
<td>8.5 ± 0.10 (8.0)</td>
<td>22 ± 1.3</td>
<td>1.75σ</td>
</tr>
<tr>
<td>qqHH</td>
<td>12.6 ± 0.1 (10.9)</td>
<td>55 ± 2.0</td>
<td>1.65σ</td>
</tr>
</tbody>
</table>

Table 2: Results of the event selection of ZHH with HH \rightarrow bbbb corresponding to an integrated luminosity of $\mathcal{L} = 2$ ab$^{-1}$ and a beam polarisation of $P(e^+e^-) = (0.3, -0.8)$.

major bkg.: tt, ZZ, ZZZ, ZZH

- results (combined)

<table>
<thead>
<tr>
<th>\sqrt{s}</th>
<th>$\int L dt$</th>
<th>$\Delta \sigma / \sigma$</th>
<th>$\Delta \lambda_{HHH} / \lambda_{HHH}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZHH @ 500 GeV</td>
<td>4 ab$^{-1}$ (*)</td>
<td>17%</td>
<td>27%</td>
</tr>
<tr>
<td>$\nu \nu$ HH @ 1 TeV</td>
<td>4 ab$^{-1}$ (***)</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

$P(e^+, e^-) =$ *: equally shared by (-0.8, +0.3) and (+0.8, -0.3); **: (-0.8, +0.2)
from di-Higgs cross section to λ_{HHH}

$$\sigma = S\lambda^2 + I\lambda + B$$

(signal diagram) interference: constructive in ZHH, destructive in $\nu\nu HH$

(background diagram)

ZHH final states (500 GeV) $\nu\nu HH$ final states (>1 TeV)
Higgs self-coupling: when $\lambda_{HHH} \neq \lambda_{SM}$?

- λ_{HHH} can be enhanced significantly in BSM
- complementarity between ZHH & $\nu \nu HH$ (& LHC): interference nature
- if $\lambda_{HHH} / \lambda_{SM} = 2$, λ_{HHH} be measured to $\sim 13\%$ using ZHH at 500 GeV e^+e^-

A strong probe for electroweak baryogenesis
Higgs self-coupling: impact of ECM

optimal $\sqrt{s} \sim 500$-600 GeV

preferred $\sqrt{s} \geq 1$ TeV

large room for improving full simulation results in future
\(\lambda_{hhh} \): can we really determine it mode independently?

\(\sigma_{hhh} \) depends on many other couplings

in a general model by SMEFT
λ_{hhh}: can we really determine it mode independently? yes!

\[
\frac{\sigma_{Zhh}}{\sigma_{SM}} - 1 = 0.565c_6 - 3.58c_H + 16.0(8c_{WW}) + 8.40(8c_{WB}) + 1.26(8c_{BB}) \\
-6.48c_T - 65.1c'_{HL} + 61.1c_{HL} + 52.6c_{HE},
\]

all parameters determined simultaneously: EWPOs + TGCs + Higgs @ HL-LHC & ILC

\[
c_6 = \frac{1}{0.565} \left[\frac{\sigma_{Zhh}}{\sigma_{SM}} - 1 - \sum_i a_i c_i \right]
\]

\[
\frac{\Delta \lambda_{hhh}}{\lambda_{SM}} = \Delta c_6 = \frac{1}{0.565} \left[(\frac{\Delta \sigma_{Zhh}}{\sigma_{SM}})^2 + \sum_{i,j} a_i a_j (V_c)_{ij} \right]^{\frac{1}{2}}
\]

Given the full ILC program of 2 ab^{-1} at 250 GeV and 4 ab^{-1} at 500 GeV

\[
\left[\sum_{i,j} a_i a_j (V_c)_{ij} \right]^{\frac{1}{2}} = 0.04 \ll \frac{\Delta \sigma_{Zhh}}{\sigma_{SM}} = 0.168
\]

(systematic error) (statistical error)
Prospects of improvements

• Current result on λ_{HHH}
 - 27%: ZHH 500 GeV 4 ab$^{-1}$
 - 10%: $\nu\nu$HH 1 TeV 4 ab$^{-1}$

• Performance drivers
 - b-tagging: separation of ttbar background
 - Jet clustering: selection of Z and H
 - Analysis method (event selection)

• Possible improvements
 - $K/\pi/p$ separation by dE/dx and ToF
 - Pattern recognition by deep learning
Possible improvements

Pico-sec ToF

\[K/\pi/p \] separation by combining dE/dx at TPC and timing at ECAL

Hardware:
Fast silicon detector (LGAD)

Software:
Precise timing reconstruction
Flavor tagging with PID
Particle flow with timing

Jet clustering by deep learning

Jet clustering as well as flavor tagging and event selection should be improved by deep learning techniques (convolutional network, recurrent network, graph network...) various trials ongoing

Target: 20-30% improvement in a few years
Summary

• Higgs self-coupling measurement is an essential probe for vacuum structure
 - Also essential for EW baryogenesis
• ILC gives powerful probe to the self coupling
 - 27%: ZHH 500 GeV 4 ab\(^{-1}\)
 Positive interference: preferred for \(\lambda > 1\)
 - 10%: \(\nu\nu HH\) 1 TeV 4 ab\(^{-1}\)
 Negative interference (as LHC): better for \(\lambda < 1\)
• Various hardware/software efforts ongoing for improvements: results in a few years
The only probe for Higgs potential:
self coupling

<table>
<thead>
<tr>
<th>Lagrangian term</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge force</td>
<td>QCD, electroweak</td>
</tr>
<tr>
<td>Yukawa force</td>
<td>Higgs-fermion</td>
</tr>
<tr>
<td>Higgs force</td>
<td>Higgs self-coupling</td>
</tr>
</tbody>
</table>

- The last force in SM
- A good probe for BSM with ~30% accuracy

\[V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \text{h.c.}, \quad \mu^2 < 0, \lambda > 0 \]
full simulation studies @ ILC

• generator: Whizard 1.95, Physsim (realistic beamsstrahlung, ISR, pile-up)
• parton shower & hadronization: Pythia 6
• detector model: ILD (as realistic as possible material budget, blind areas)
• simulation & reconstruction: Geant 4, iLCSoft (realistic algorithms for tracking, particle flow, flavor tagging, jet-clustering, etc)
• event selection: full SM background, realistic cuts, careful categorization, kinematic fitting, multivariate method