Prospects of Higgs selfcoupling measurements at the ILC using ILD detector

Taikan Suehara (Kyushu University)

On behalf of ILD group

International Linear Collider Project

- e⁺e⁻ linear collider to be built in Japan
- Higgs factory (250 GeV) starting at 2035-2040
 - Beam polarization (e⁻: 80%, e⁺: 30% expected)
 - 2 ab⁻¹, similar physics potential with FCCee (by polarization)
- Upgradable by increasing tunnel length and accelerating gradien

Energy	Physics	Technology	
350 GeV	Top threshold	Better surface treatment	
~500 GeV	Higgs self coupling (ZHH)	(up to ~50 MV/m)	
~1 TeV	Higgs self coupling ($vvHH$)	Thin-film superconductor	
Up to a few TeV	BSM search (eg. TeV Wino)	(up to ~100 MV/m)	
30 TeV	?	Plasma accelerator? (~1 GV/m)	

ILD detector

- International Large Detector (ILD)
 - One of two detector concepts for ILC
- Particle flow concept
 - Separate particles in jets by highly-segmented calorimeters
- Key subsystems
 - Monolithic vertex detector
 - TPC + silicon tracker
 - High granular calorimeter (silicon/scintillator ECAL, scintillator/RPC HCAL)

Unprecended performance by precise particle imaging

- b/c tagging, momentum resolution, jet energy resolution...

Higgs self coupling and baryogenesis

 λ determines the quadratic term of Higgs potential \rightarrow Unique probe for structure of vacuum

Electroweak baryogenesis requires strong 1st order EW transition
→ In the two-Higgs doublet models,
λ positively deviates by >20%
→ should be an experimental target

Higgs self-coupling at ILC $\sqrt{s} = 500 \text{ GeV}: e^+e^- \rightarrow ZHH$ $\sqrt{s} \ge 1 \text{ TeV}: e^+e^- \rightarrow v_e v_e HH$

Decay channels

dominant channels covered for ZHH @ 500 GeV

Z decay mode	HH decay mode	BranchingRatio
$Z \rightarrow e^+ e^-$	$HH \to b\bar{b}b\bar{b}$	1.1%
$Z ightarrow \mu^+ \mu^-$	$HH \to b\bar{b}b\bar{b}$	1.1%
$Z \to \nu^+ \bar{\nu}$	$HH \to b \bar{b} b \bar{b}$	6.7%
$Z \to b \bar{b}$	$HH \to b \bar{b} b \bar{b}$	5.0%
$Z \to q \bar{q}$	$HH \to b\bar{b}b\bar{b}$	17%
$Z \to b\bar{b}$	$HH \to b\bar{b}WW^*, WW^* \to 4q$	1.7%
$Z \to c\bar{c}$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow 4q$	1.4%
$Z \to b\bar{b}$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow l\nu 2q$	1.1%
$Z \to c\bar{c}$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow l\nu 2q$	0.92%
$Z \rightarrow l^+ l^-$	$HH \rightarrow b \bar{b} WW^*, WW^* \rightarrow 4q$	0.76%
$Z \rightarrow l^+ l^-$	$HH \to b\bar{b}WW^*, WW^* \to l\nu 2q$	0.50%

Table 1: signal channels analysed for $e^+e^- \rightarrow ZHH$ at $\sqrt{s} = 500$ GeV.

(for e⁺e⁻ →vvHH@1TeV: HH → bbbb/bbWW* are covered) Taikan Suehara, Higgs2021 online, 20 Oct. 2021 page 6

Result of full simulation studies

results (example individual channels)

ZHH channel	$s (HH \rightarrow bbbb)$	b	σ_e
eeHH	$3.9 \pm 0.03 \ (2.6)$	7 ± 0.6	1.29σ
$\mu\mu HH$	$5.1 \pm 0.03 \ (2.8)$	9 ± 0.5	1.48σ
u u HH	$5.6 \pm 0.04 \ (5.5)$	7 ± 1.0	1.78σ
bbHH	$8.5 \pm 0.10 \; (8.0)$	22 ± 1.3	1.75σ
qqHH	$12.6 \pm 0.1 \ (10.9)$	55 ± 2.0	1.65σ

Table 2: Results of the event selection of ZHH with $HH \rightarrow bbbb$ corresponding to an integrated luminosity of $\mathcal{L} = 2$ ab⁻¹ and a beam polarisation of $P(e^+e^-) = (0.3, -0.8)$.

major bkg.: tt, ZZ, ZZZ, ZZH

results (combined)

\sqrt{S}	$\int L \mathrm{d}t$	$\Delta\sigma/\sigma$	$\Delta \lambda_{HHH} / \lambda_{HHH}$
ZHH @ 500 GeV	4 ab ^{-1 (*)}	17%	27%
νν ΗΗ @ 1 TeV	4 ab ^{-1 (**)}	15%	10%

P(e+, e-) = *: equally shared by (-0.8,+0.3) and (+0.8,-0.3); **: (-0.8,+0.2) Taikan Suehara, Higgs2021 online, 20 Oct. 2021 page 7

from di-Higgs cross section to λ_{ΗΗΗ} $\sigma = S\lambda^2 + I\lambda + B$

(interference)

(signal diagram)

(background diagram)

ZHH final states (500 GeV)

vvHH final states (>1 TeV)

interference: constructive in ZHH, destructive in vvHH Taikan Suehara, Higgs2021 online, 20 Oct. 2021 page 8

Higgs self-coupling: when λннн ≠ λѕм?

- λ_{HHH} can be enhanced significantly in BSM
- complementarity between ZHH & vvHH (& LHC): interference nature
- if λ_{HHH} / λ_{SM} = 2, λ_{HHH} be measured to ~13% using ZHH at 500 GeV e⁺e⁻ A strong probe for electroweak baryogenesis

Higgs self-coupling: impact of ECM

10² +e →ZHH (100% Eff., no Bkg.) v⊽HH (100% Eff., no Bkg. +e →ZHH (full simulation →vv HH (full simulation) 10

[%] V / V 10² 10 2500 3000 500 2000 2500 500 1000 1500 2000 1000 1500 3000 √s [GeV] √s [GeV]

preferred $\sqrt{s} >=1 \text{ TeV}$

 $\nu\nu$ HH

optimal √s~500-600 GeV

ZHH

large room for improving full simulation results in future

λhhh: can we really determine it mode independently?

 σ_{HHX} depends on many other couplings

in a general model by SMEFT Taikan Suehara, Higgs2021 online, 20 Oct. 2021 page 11

λhhh: can we really determine it mode independently? yes!

 $\frac{\sigma_{Zhh}}{\sigma_{SM}} - 1 = 0.565c_6 - 3.58c_H + 16.0(8c_{WW}) + 8.40(8c_{WB}) + 1.26(8c_{BB}) - 6.48c_T - 65.1c'_{HL} + 61.1c_{HL} + 52.6c_{HE},$

all parameters determined simultaneously: EWPOs + TGCs + Higgs @ HL-LHC & ILC

$$c_6 = \frac{1}{0.565} \left[\frac{\sigma_{Zhh}}{\sigma_{SM}} - 1 - \sum_i a_i c_i \right]$$

Barklow, et al arXiv:1708.09079

$$\frac{\Delta\lambda_{hhh}}{\lambda_{SM}} = \Delta c_6 = \frac{1}{0.565} \left[\left(\frac{\Delta\sigma_{Zhh}}{\sigma_{SM}} \right)^2 + \sum_{i,j} a_i a_j (V_c)_{ij} \right]^{\frac{1}{2}}$$

Given the full ILC program of 2 ab^{-1} at 250 GeV and 4 ab^{-1} at 500 GeV

$$\left[\sum_{i,j} a_i a_j (V_c)_{ij}\right]^{\frac{1}{2}} = 0.04 \quad \ll \quad \frac{\Delta \sigma_{Zhh}}{\sigma_{SM}} = 0.168$$
(systematic error) (statistical error)

Prospects of improvements

- Current result on λ_{HHH}
 - 27%: ZHH 500 GeV 4 ab⁻¹
 - 10%: vvHH 1 TeV 4 ab⁻¹
- Performance drivers
 - b-tagging: separation of ttbar background
 - Jet clustering: selection of Z and H
 - Analysis method (event selection)
- Possible improvements
 - K/ π /p separation by dE/dx and ToF
 - Pattern recognition by deep learning

Possible improvements

Pico-sec ToF

Jet clustering by deep learning

K/π/p separation by combining dE/dx at TPC and timing at ECAL

Hardware:

Fast silicon detector (LGAD) Software:

Precise timing reconstruction Flavor tagging with PID Particle flow with timing Jet coloring by convolutional network (under development)

> Jet clustering as well as flavor tagging and event selection should be improved by deep learning techniques (convolutional network, recurrent network, graph network...) various trials ongoing

Target: 20-30% improvement in a few yearsTaikan Suehara, Higgs2021 online, 20 Oct. 2021 page 14

Summary

- Higgs self-coupling measurement is an essential probe for vacuum structure
 - Also essential for EW baryogenesis
- ILC gives powerful probe to the self coupling
 - 27%: ZHH 500 GeV 4 ab^{-1} Positive interference: preferred for $\lambda > 1$
 - 10%: vvHH 1 TeV 4 ab⁻¹ Negative interference (as LHC): better for $\lambda < 1$
- Various hardware/software efforts ongoing for improvements: results in a few years

The only probe for Higgs potential: self coupling

SM force

V

(b) = $u^{2} \Phi ^{2} + \lambda \Phi ^{4} + hc$ $u^{2} < 0$ $\lambda > 0$ (called intermined intermined in the second seco	Lograngian torm	ovomplo	
$(\Phi) = u^{2} \Phi ^{2} + \lambda \Phi ^{4} + hc$ $u^{2} < 0, \lambda > 0$ $(\Phi) = u^{2} \Phi ^{2} + \lambda \Phi ^{4} + hc$ $u^{2} < 0, \lambda > 0$ $(\Phi) = u^{2} \Phi ^{2} + \lambda \Phi ^{4} + hc$ $(\Phi) = u^{2} < 0, \lambda > 0$ $(\Phi) = u^{2} \Phi ^{2} + \lambda \Phi ^{4} + hc$ $(\Phi) = u^{2} < 0, \lambda > 0$	Gauge force Yukawa force Higgs force	QCD, electroweak Higgs-fermion Higgs self-coupling	 The last force in SM A good probe for BSM with ~30% accuracy
$(\mathbf{x}) = \mu [\mathbf{x}] \pm \eta [\mathbf{x}] \pm \eta [\mathbf{y}] = \mu + \nabla \eta \eta \neq 0$ for $\nabla \eta \in \mathcal{S}(\mathbf{x})$ for $\eta \in \mathcal{S}(\mathbf{y})$	$(\Phi) = \mu^2 \Phi ^2 + \lambda \Phi ^4$	$ + h.c., \qquad \mu^2 < 0, \lambda > 0 $	500 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

full simulation studies @ ILC

- generator: Whizard 1.95, Physsim (realistic beamsstrahlung, ISR, pile-up)
- parton shower & hadronization: Pythia 6
- detector model: ILD (as realistic as possible material budget, blind areas)
- simulation & reconstruction: Geant 4, iLCSoft (realistic algorithms for tracking, particle flow, flavor tagging, jetclustering, etc)
- event selection: full SM background, realistic cuts, careful categorization, kinematic fitting, multivariate method