Higgs CP via Higgs to ZZ final state in CEPC

Yanxi Gu^a, <u>Ke Li^b</u>, Mengyao Liu^c, Xin Shi^d, Meng Xiao^e

^{a,} University of California San Diego

^{b,} University of Washington

^{c,} Shandong University

d: Institute of High Energy Physics

^{e,} Zhejiang University

Motivation

- The observed 125 GeV Higgs is spin-0, CP-even
- New physics -> anomalous coupling

Experimental results on anomalous coupling

Expectation at hadron/lepton collider

- At HL-LHC, sensitivity could reach 10⁻³
- At lepton collider (250/fb at 250 GeV), sensitivity is comparable with HL-LHC
- Further improved from combination of $ee \rightarrow ZH$ and $H \rightarrow ZZ$

Circular Electron Positron Collider(CEPC)

- Proposed project for precise measurement of Higgs properties
 - could also run as Z and W factories
- High luminosity, i.e. 3×10^{34} cm⁻²s⁻¹ at $\sqrt{s} = 240$ GeV
 - Top-up operation is available
- Circumference: 100km
 - Reusable for SPPC

operation mode	Z factory	WW threshold	Higgs factory
\sqrt{s}/GeV	91.2	160	240
run time/y	2	1	7
instantaneous luminosity/ $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	16-32	10	3
integrated luminosity/(ab ⁻¹)	8-16	2.6	5.6
Higgs boson yield	_	-	10^{6}
W boson yield	_	10 ⁷	10^{8}
Z boson yield	$10^{11} - 10^{12}$	10 ⁸	10 ⁸

Precision of Higgs coupling measurement (7-parameter Fit)

CEPC timeline

At CEPC

- ~1M $ee \rightarrow ZH$ events with much lower background than LHC
- Ideal place for search of anomalous coupling
 - Analyze both production ($ee \rightarrow ZH$) and decay ($H \rightarrow ZZ$) vertex
 - Investigate two distinct Q²(240 and 125 GeV), different sensitivity to anomalous couplings
 - $H \rightarrow bb \text{ or } H \rightarrow ZZ$
- Anomalous coupling is sensitive to angular distributions
 - helicity angle and azimuthal angle
 - Use BDT to combine all variables

Production cross sections

7

Previous study at CEPC

- Maximum likelihood fit on the angular distributions for $e^+e^- \rightarrow ZH \rightarrow \mu^{\pm}\mu^{\mp}b\bar{b}$
- Sensitivity for f_{CP} is 0.007
- convert to $H \rightarrow ZZ$ decay

 $f_{CP}^{dec} = 1.3 \times 10^{-4}$

- Unique advantage at lepton collider:
 - Separately and jointly measure anomalous coupling at 240 and 125 GeV

Truth-level study

- First demonstrate the study with truth-level information
 - The study with detector response are in processing
- Limited by the statistics from previous study
- Analyze the $ee \rightarrow ZH$ and $H \rightarrow ZZ$ separately
 - $ZH \rightarrow \mu\mu lljj/\mu\mu jjjj$
 - $ZH \rightarrow llllll$ (statistics is too low)

- Generator: <u>JHUGen</u>
- Signal: BSM CP-odd
- Bkg: SM CP-even
- No interference
- Detector acceptance and object selections are taken from <u>CEPC CDR</u>

Expected upperlimit

- $ee \rightarrow ZH$ at 240 GeV
 - Upperlimit at 95% C.L. of anomalous coupling ratio

 $\frac{ghz_{odd}}{ghz_{SM}} < 3.9 \times 10^{-2}$

- $f_{CP}: < 1.2 \times 10^{-2}$
- Consist (slightly better) to previous CPEC results
- Convert to $H \rightarrow ZZ$: $f_{CP}^{dec} < 2.3 \times 10^{-4}$
- $H \rightarrow ZZ \ (ZZ \rightarrow llll/lljj/jjj)$
 - f_{CP}^{dec} : < 5.5 × 10⁻⁴
- Limited by statistics, more channels $(Z \rightarrow bb/cc)$ will improve the sensitivity

Summary

- Naive generator-level analysis for anomalous coupling from both *ee* → *ZH* and *H* → *ZZ* channels are performed
- Good sensitivity is observed compared to LHC.
 - Mainly limited by statistics
- More comprehensive analysis with CEPC simulation and reconstruction is in processing

Back-up

Expected results

- Upperlimit at 95% C.L.
 - anomalous coupling ratic
 - $\frac{ghz_{odd}}{ghz_{SM}} < 3.9 \times 10^{-2}$
 - f_{a3} : < 1.2 × 10⁻²
 - Consist (slightly better) tc CPEC results
- Convert to H->ZZ
 - $f_{a3}^{dec} < 2.3 \times 10^{-4}$

number of CP-odd events

Decay vertex $(H \rightarrow ZZ^* \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\mu^{\mp})$

• Inclusive H->ZZ

- $ZZ^* \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm} \mu^{\mp}$ should be very clean
- Background need to be studied carefully
- BDT with $\phi, \phi_1, \cos\theta_1, \cos\theta_2, \cos\theta_*$
- Very-preliminary results
- Maximum likelihood fit on the BDT distributions

