Unveiling the Higgs at FCC-hh

With new diboson precision measurements

Higgs 2021

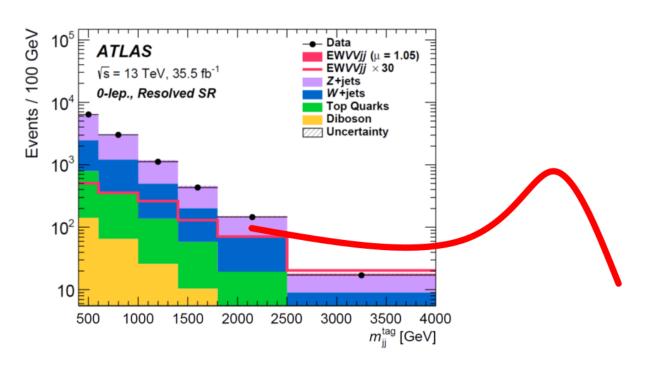
19 October 2021

Alejo N. Rossia

Department of Physics and Astronomy University of Manchester

With F. Bishara, S. De Curtis, L. Delle Rose, P. Englert, C. Grojean, M. Montull, G. Panico.

arXiv 2004.06122 (JHEP 07 (2020) 075)

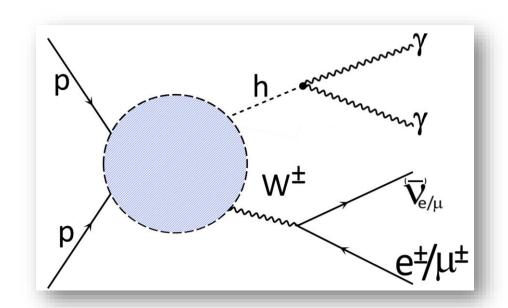

arXiv 2011.13941 (JHEP 04 (2021) 154)

Precision with hadron colliders

Clean channels + NP effects that grow with E

Tail hunting!

Heavy New Physics



Effective Field Theories

Leptonic diphoton Vh.

$$pp \to W^{\pm}h \to l^{\pm}\nu \gamma \gamma$$

$$pp \to Zh \to l^+l^- (\nu\bar{\nu})\gamma\gamma$$

What can we gain at FCC-hh?

Probed six dim.-6 SMEFT operators:

$$\mathcal{O}_{arphi q}^{(1)}$$

$$\mathcal{O}_{\varphi q}^{(3)}$$

$$\mathcal{O}_{arphi u}$$

$$\mathcal{O}_{arphi d}$$

$$\mathcal{O}_{arphi u}$$
 $\mathcal{O}_{arphi d}$ $\mathcal{O}_{arphi \mathrm{W}}$

$$\mathcal{O}_{arphi \widetilde{\mathrm{W}}}$$

Conclusions

- New diboson channels to do precision measurements at FCC-hh, like Wh and Zh with $h \rightarrow \gamma\gamma$.
- With a simple p_T binning, they offer competitive sensitivity to $\mathcal{O}_{\varphi q}^{(3)}$.
- A second binning in angles or rapidity improves the sensitivity to other operators, even to the interference of a CP-odd one.

Thank you for your attention

Contact

Alejo N. Rossia

HEP Theory Group – Dept. Of Physics and Astronomy

E-mail: alejo.rossia at manchester dot ac dot uk

http://www.hep.man.ac.uk/

Appendix.

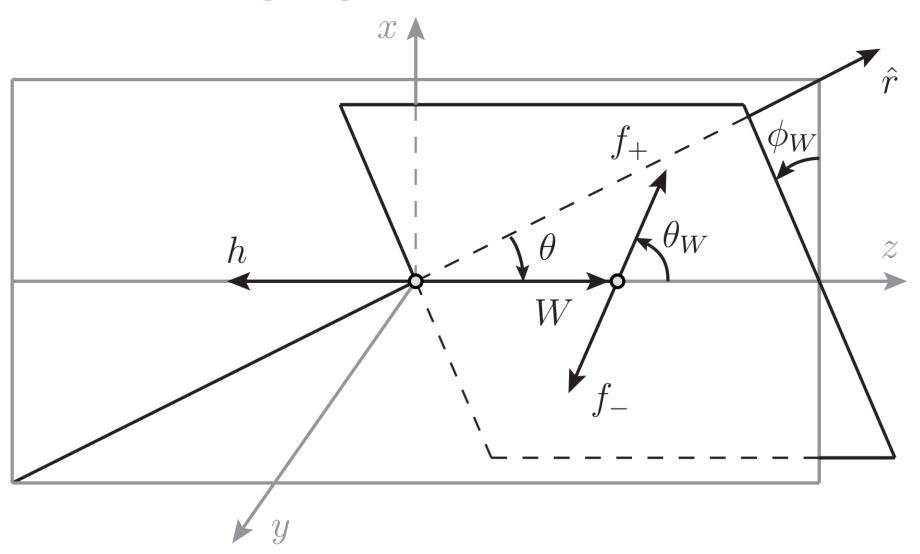
For even more details, read our papers.

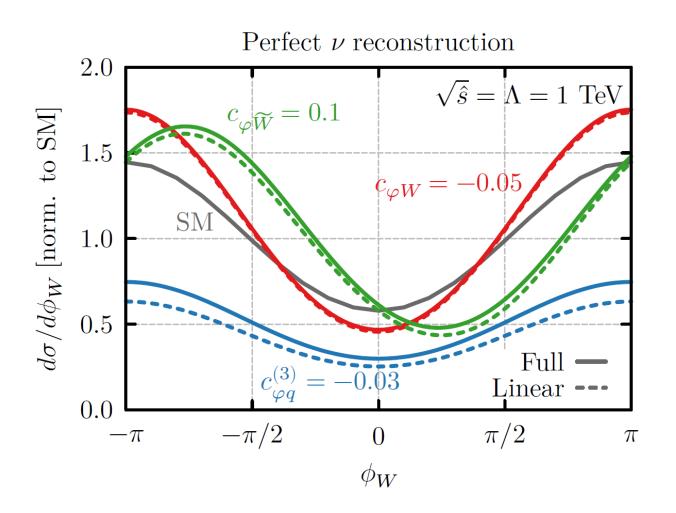
What New Physics can we probe?

Assumptions: SMEFT + Dim. 6 op. in Warsaw basis + MFV.

High energy behavior

$$\frac{c_{\varphi q}^{(3)}}{\Lambda^{2}} \left(\overline{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L} \right) \left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right) \longrightarrow \frac{\mathcal{A}_{BSM}}{\mathcal{A}_{SM}} \sim \hat{s}$$


$$\frac{c_{\varphi W}}{\Lambda^{2}} H^{\dagger} H W^{a,\mu\nu} W_{\mu\nu}^{a}$$

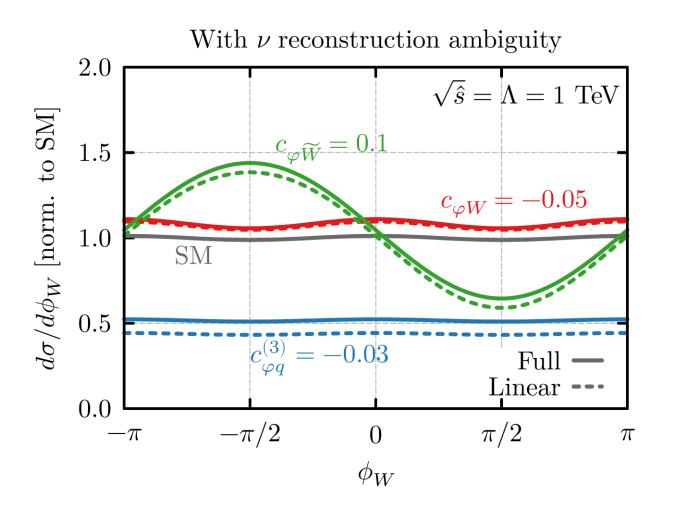

$$\frac{c_{\varphi \widetilde{W}}}{\Lambda^{2}} H^{\dagger} H W^{a,\mu\nu} \widetilde{W}_{\mu\nu}^{a}$$

$$\frac{\mathcal{A}_{BSM}}{\mathcal{A}_{SM}} \sim \sqrt{\hat{s}}$$

$$\widetilde{W}^{a,\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} W^a_{\rho\sigma}$$

Measuring angles resurrects interference

Differential in p_T^h and ϕ_W


$$\sigma_{\mathcal{O}_{\varphi q}^{(3)}}^{int} \sim \frac{\hat{s}}{\Lambda^2}$$

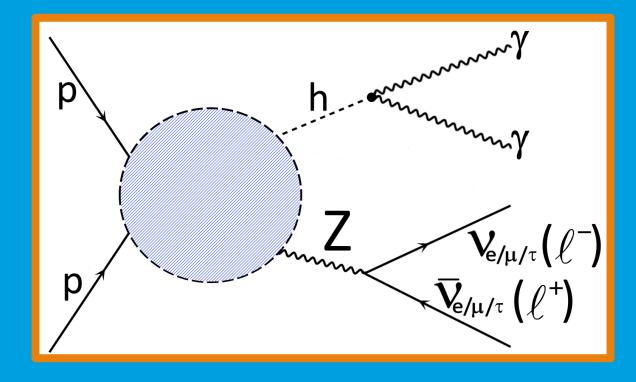
$$\sigma_{\mathcal{O}_{\varphi W}}^{int} \sim \frac{\sqrt{\hat{s}} M_W}{\Lambda^2} \cos(\phi_W)$$

$$\sigma_{\mathcal{O}_{\varphi \widetilde{W}}}^{int} \sim \frac{\sqrt{\hat{s}} M_W}{\Lambda^2} \sin(\phi_W)$$

$$p_T^h \in \{200, 400, 600, 800, 1000, \infty\} \text{ GeV}$$

$$\phi_W \in [-\pi, 0], [0, \pi]$$

Differential in p_T^h and ϕ_W


$$\sigma^{int}_{\mathcal{O}_{arphi^{q}}} \sim rac{\hat{s}}{\Lambda^{2}} \, rac{m{v} \, ext{reconstruction}}{\Lambda^{2}} \ \sigma^{int}_{\mathcal{O}_{arphi^{W}}} \sim rac{\hat{s}M_{W}}{\Lambda^{2}} \, \sin{(\phi_{W})} \ \sigma^{int}_{\mathcal{O}_{arphi^{\widetilde{W}}}} \sim rac{\sqrt{\hat{s}}M_{W}}{\Lambda^{2}} \sin{(\phi_{W})}$$

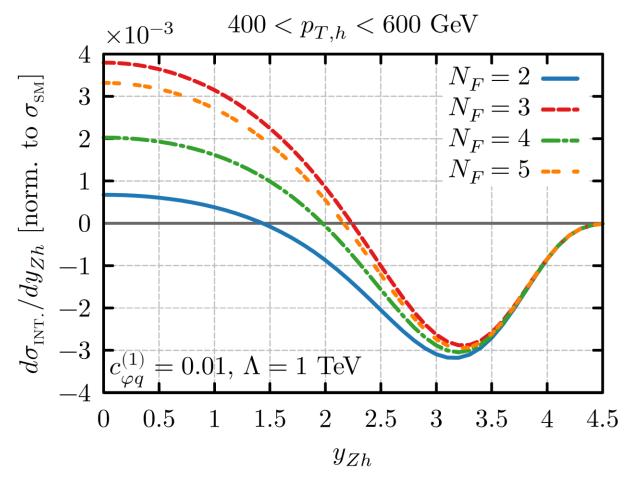
$$p_T^h \in \{200, 400, 600, 800, 1000, \infty\} \text{ GeV}$$

$$\phi_W \in [-\pi, 0], [0, \pi]$$

Diphoton Zh.

arXiv 2011.13941 (JHEP 04 (2021) 154)

$$pp \to Zh \to l^+l^- (\nu\bar{\nu})\gamma\gamma$$


What New Physics can we probe?

Assumptions: SMEFT + Dim. 6 op. in Warsaw basis + Flav. Univ.

$$\frac{c_{\varphi q}^{(3)}}{\Lambda^{2}} \left(\overline{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L} \right) \left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right)
\frac{c_{\varphi q}^{(1)}}{\Lambda^{2}} \left(\overline{Q}_{L} \gamma^{\mu} Q_{L} \right) \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)
\frac{c_{\varphi u}}{\Lambda^{2}} \left(\overline{u}_{R} \gamma^{\mu} u_{R} \right) \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)
\frac{c_{\varphi d}}{\Lambda^{2}} \left(\overline{d}_{R} \gamma^{\mu} d_{R} \right) \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)$$

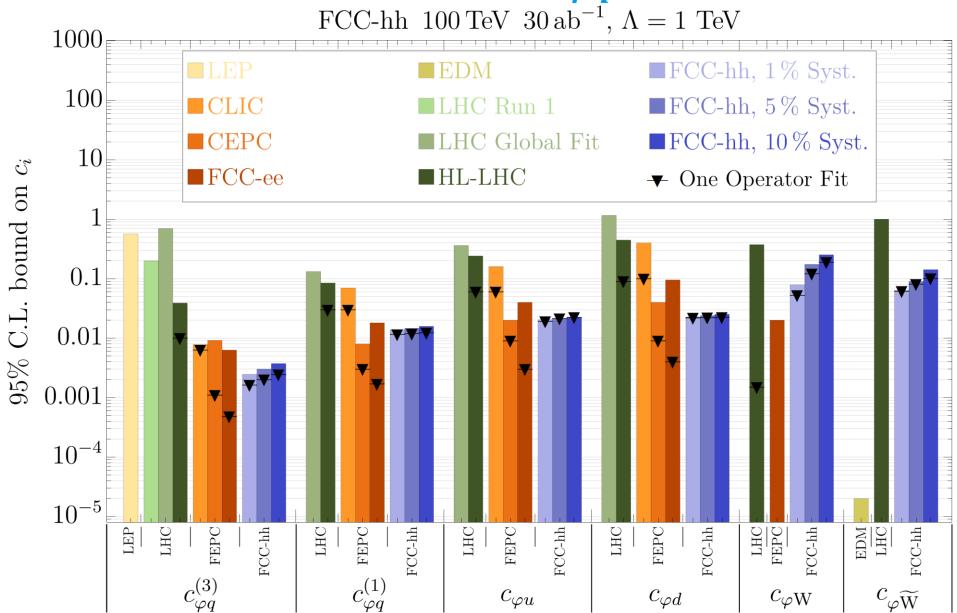
High energy behavior

$$rac{{\cal A}_{BSM}}{{\cal A}_{SM}}\sim \hat{s}$$

$$\sigma^{int}_{\mathcal{O}^{(1)}_{\varphi q}} \propto s_W^2 Q - T_3$$

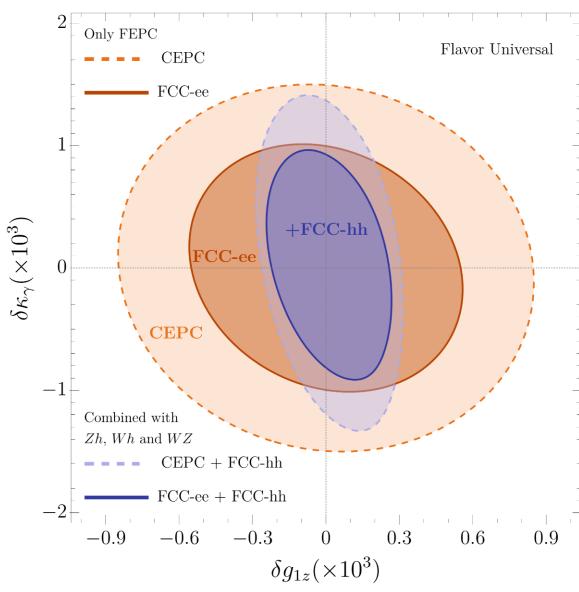
Cancellation of up and down contributions

$$\sigma^{int}_{\mathcal{O}_{\varphi u(d)}} \propto g^{Zu(d)}_R$$


Suppression by SM coupling

Differential in p_T and rapidity

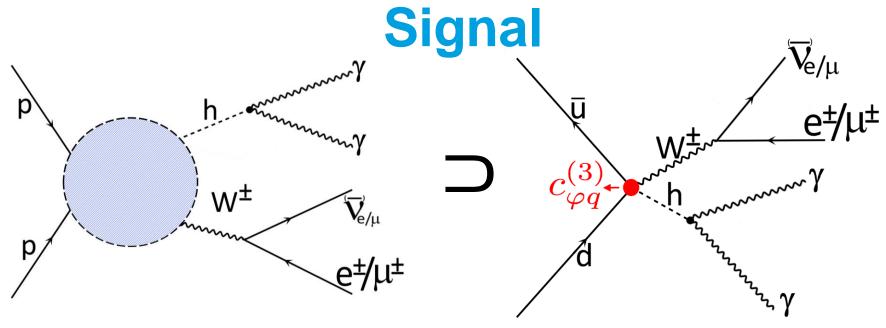
$$Min\{p_T^h, p_T^Z\} \in \{200, 400, 600, 800, 1000, \infty\}$$
 GeV

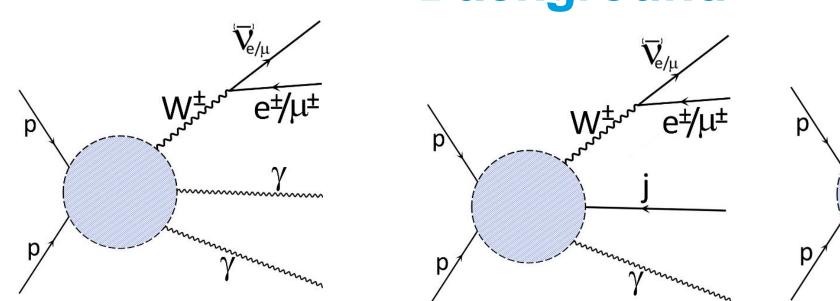

$$|y_{Zh}| \in [0,2), [2,6]$$

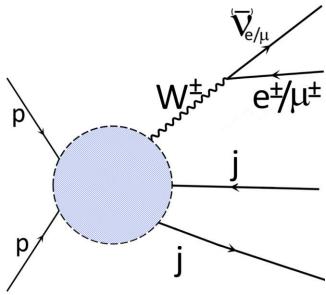
Very competitive bounds for $c_{\varphi q}^{(3)}$ (Zh + Wh comb.)

Sizeable impact on aTGC bounds

FCC-hh $100 \,\text{TeV} \, 30 \,\text{ab}^{-1}, \, 95\% \, \text{C.L.}, \, 5\% \, \text{Syst.}$




Helicity amplitudes: High energy behavior


W polarization	SM	$\mathcal{O}_{arphi q}^{(3)}$	$\mathcal{O}_{arphi ext{W}}$	$\mathcal{O}_{arphi \widetilde{\mathrm{W}}}$
$\lambda = 0$	1	$rac{\hat{s}}{\Lambda^2}$	$rac{M_W^2}{\Lambda^2}$	0
$\lambda = \pm$	$\frac{M_W}{\sqrt{\hat{s}}}$	$rac{\sqrt{\hat{s}}M_W}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_W}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_W}{\Lambda^2}$

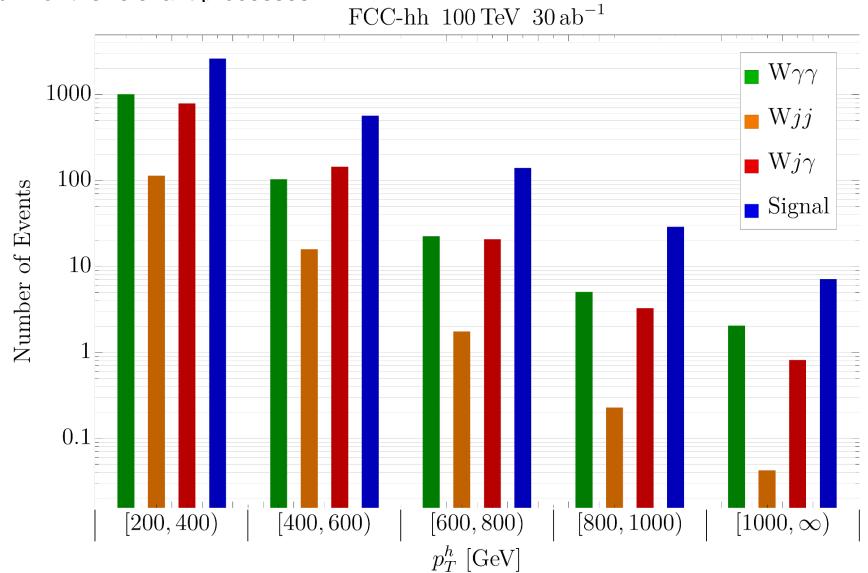
Background

Simulation details

- Montecarlo generation: Madgraph5_aMC@NLO v.2.6.5; showering: Pythia 8.2; detector simulation: Delphes v.3.4.1 with FCC-hh card.
- Signal and $W\gamma\gamma$ simulated at FO, the rest simulated at LO. QED k-factor for the signal.
- Parton level generation cuts:

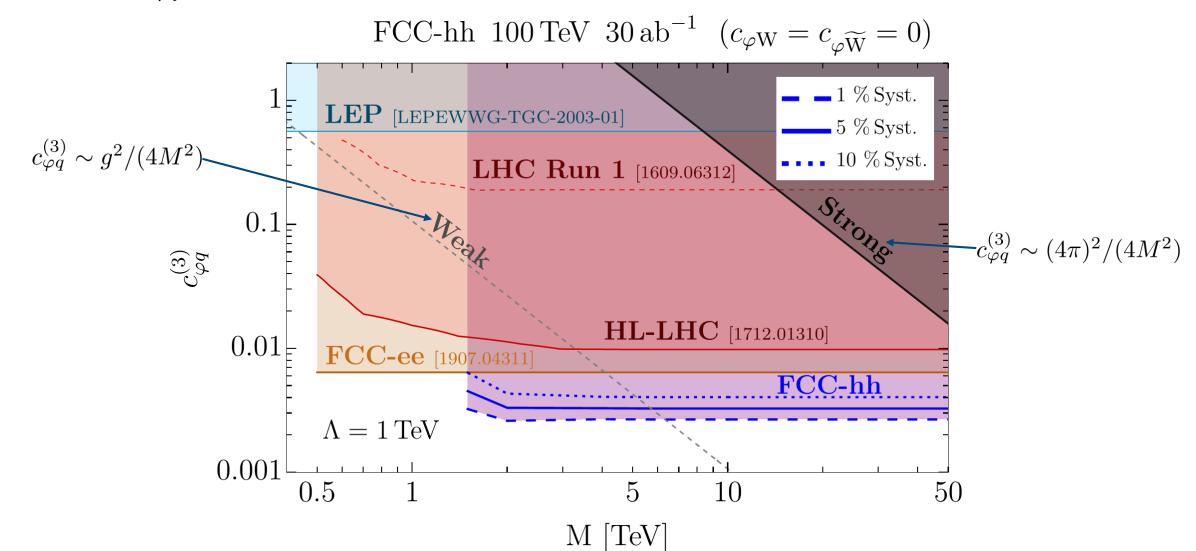
	Wh		$W\gamma\gamma$	$Wj\gamma$ and Wjj
$p_{T,\mathrm{min}}^{\ell}$ [GeV]		30	(all samples)	
$p_{T,\mathrm{min}}^{\gamma,j}$ [GeV]		50	(all samples)	
${E_{T,\min}} \ [\mathrm{GeV}]$		100	(all samples)	
$ \eta_{ ext{max}}^{j,\ell} $		6.1	(all samples)	
$\Delta R_{\min}^{\gamma\gamma,\gamma j,\gamma\ell}$	_		0.01	0.01
$\Delta R_{ m max}^{\gamma\gamma,\gamma j,jj}$	_		2.5	2
$m^{\gamma\gamma,\gamma j,jj}$ [GeV]	_		[50,300]	[50,250]
$p_{T,\mathrm{min}}^{h,\gamma\gamma}$ [GeV]	{150,350,550,750}	{100	,300,500,700}	_
$p_{T,\mathrm{min}}^{\ell\nu}$ [GeV]	_		_	$\{100,\!300,\!500,\!700\}$

Analysis details

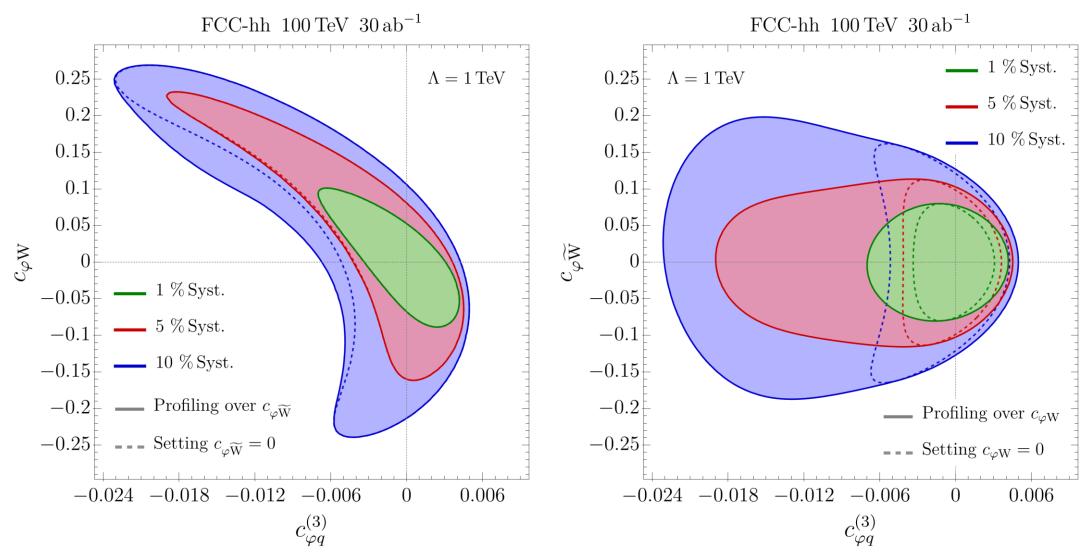

Selection cuts and cutflow in the third p_T^h bin:

	Selection cuts
$p_{T,\mathrm{min}}^{\ell} \; [\mathrm{GeV}]$	30
$p_{T,\mathrm{min}}^{\gamma} \; [\mathrm{GeV}]$	50
$\not\!\!E_{T,\mathrm{min}}\ [\mathrm{GeV}]$	100
$m_{\gamma\gamma} \; [{ m GeV}]$	[120, 130]
$\Delta R_{ m max}^{\gamma\gamma}$	$\{1.3, 0.9, 0.75, 0.6, 0.6\}$
$p_{T,\text{max}}^{Wh} \text{ [GeV]}$	{300, 500, 700, 900, 900}

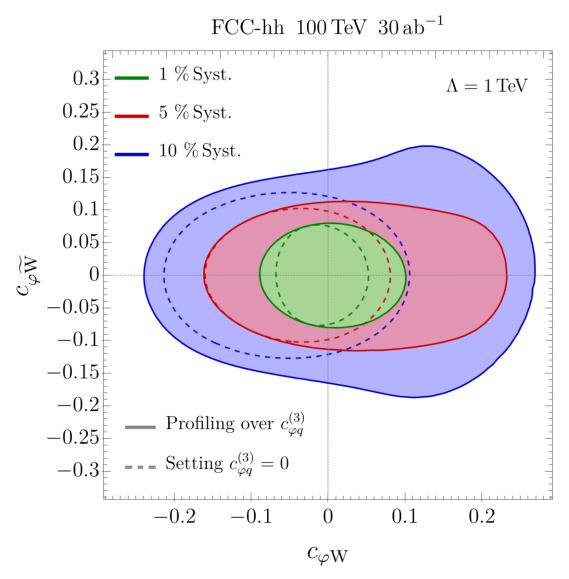
Selection cuts / efficiency	$\xi_{h \to \gamma \gamma}^{(3)}$	$\xi_{\gamma\gamma}^{(3)}$	$\xi_{j\gamma}^{(3)}$	$\xi_{jj}^{(3)}$
$\geq 1\ell^{\pm}$ with $p_T > 30 \text{ GeV}$	0.86	0.46	0.94	0.94
$\geq 2\gamma$ each with $p_T > 50$ GeV	0.50	0.18	$5.7 \cdot 10^{-3}$	$8.7 \cdot 10^{-7}$
$E_T > 100\mathrm{GeV}$	0.49	0.16	$5.1 \cdot 10^{-3}$	$8.5 \cdot 10^{-7}$
$120\mathrm{GeV} < m_{\gamma\gamma} < 130\mathrm{GeV}$	0.46	$6 \cdot 10^{-3}$	$2 \cdot 10^{-4}$	$8.2 \cdot 10^{-8}$
$\Delta R^{\gamma\gamma} < \Delta R_{max}$	0.45	$4 \cdot 10^{-3}$	$3.1 \cdot 10^{-5}$	$6.4 \cdot 10^{-8}$
$p_T^{Wh} < p_{T,max}^{Wh}$	0.41	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-8}$

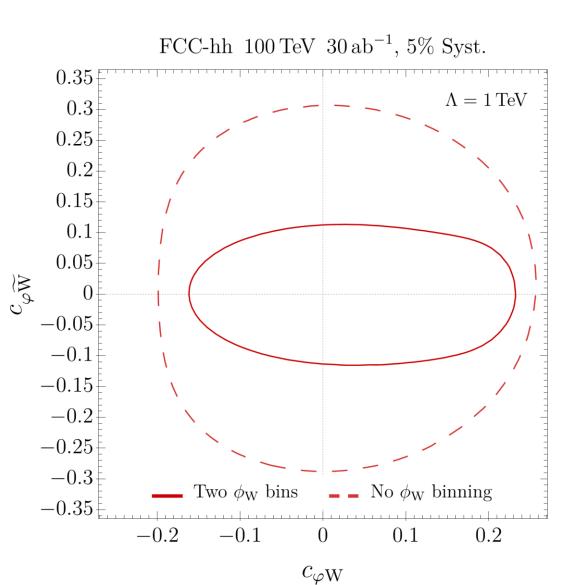


Events per bin for the relevant processes



Bounds on $\mathcal{O}_{\varphi q}^{(3)}$ with one operator fit as a function of the NP scale M. See details in JHEP 07 (2020) 075, Fig. 5




95% CL bounds

95% CL bounds

95% CL bounds summary

Coefficient	Profiled Fit		One Operator Fit	
	$[-5.1, 3.4] \times 10^{-3}$ 1	% syst.	$[-2.7, 2.5] \times 10^{-3}$	1% syst.
$c_{\varphi q}^{(3)}$	$[-11.6, 3.8] \times 10^{-3}$ 5	% syst.	$[-3.3, 2.9] \times 10^{-3}$	5% syst.
	$[-20.6, 4.1] \times 10^{-3}$ 1	0% syst.	$[-4.0, 3.5] \times 10^{-3}$	10% syst.
	$[-7.1, 7.9] \times 10^{-2}$	1% syst.	$[-5.3, 4.3] \times 10^{-2}$	1% syst.
$c_{arphi ext{W}}$	$[-13.0, 17.5] \times 10^{-2}$	5% syst.	$[-12.1, 6.8] \times 10^{-2}$	5% syst.
	$[-20.0, 25.2] \times 10^{-2}$	10% syst.	$[-18.8, 9.0] \times 10^{-2}$	10% syst.
	$[-6.4, 6.4] \times 10^{-2}$	1% syst.	$[-6.1, 6.1] \times 10^{-2}$	1% syst.
$c_{arphi \widetilde{\mathrm{w}}}$	$[-9.0, 8.8] \times 10^{-2}$	5% syst.	$[-8.1, 8.1] \times 10^{-2}$	5% syst.
	$[-13.5, 14.2] \times 10^{-2}$	10% syst.	$[-10.1, 10.1] \times 10^{-2}$	10% syst.

• Bound on aTGCs. $c_{\varphi q}^{(3)}$ is related to aTGCs as follows:

$$c_{\varphi q}^{(3)} = \frac{\Lambda^2}{m_W^2} g^2 (\delta g_L^{Zu} - \delta g_L^{Zd} - c_\theta^2 \delta g_{1z})$$

For theories where the vertex corrections are small (e.g. universal theories), the bound on $c_{\varphi q}^{(3)}$ can be recast as a bound on ∂g_{1z} . For 5% systematics and $\Lambda = 1$ TeV:

	One operator Fit	Profiled global fit
$\partial g_{1z} \in$	$[-5.0, 4.4] \times 10^{-5}$	$[-17.6, 5.8] \times 10^{-5}$

Bound from other sources:

	LEP	Current LHC	WZ@HL-LHC	FCC-ee
	([1902.00134])	([1810.05149])	([1712.01310])	([1907.04311])
$\partial g_{1z} \in$	$[-1.3, 1.8] \times 10^{-1}$	$[-19, 1] \times 10^{-3}$	$[-1,1] \times 10^{-3}$	$[-5, 5] \times 10^{-4}$

Helicity amplitudes: High energy behavior

Z polarization	SM	$\mathcal{O}_{arphi q}^{(3)}$	$\mathcal{O}_{arphi q}^{(1)}$	$\mathcal{O}_{arphi u}$	$\mathcal{O}_{arphi d}$
$\lambda = 0$	1	$rac{\hat{s}}{\Lambda^2}$	$rac{\hat{s}}{\Lambda^2}$	$rac{\hat{s}}{\Lambda^2}$	$rac{\hat{s}}{\Lambda^2}$
$\lambda = \pm 1$	$\frac{M_Z}{\sqrt{\hat{s}}}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$

Simulation details

- Montecarlo generation: Madgraph5_aMC@NLO v.2.7.3; showering: Pythia 8.2; detector simulation: Delphes v.3.4.1 with FCC-hh card. SMEFT@NLO UFO (http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO)
- Signal simulated at LO and corrected to (QCD+QED) NLO with k-factors. Gluon initiated processes simulated at LO. The rest simulated at QCD NLO.
- Parton level generation cuts:

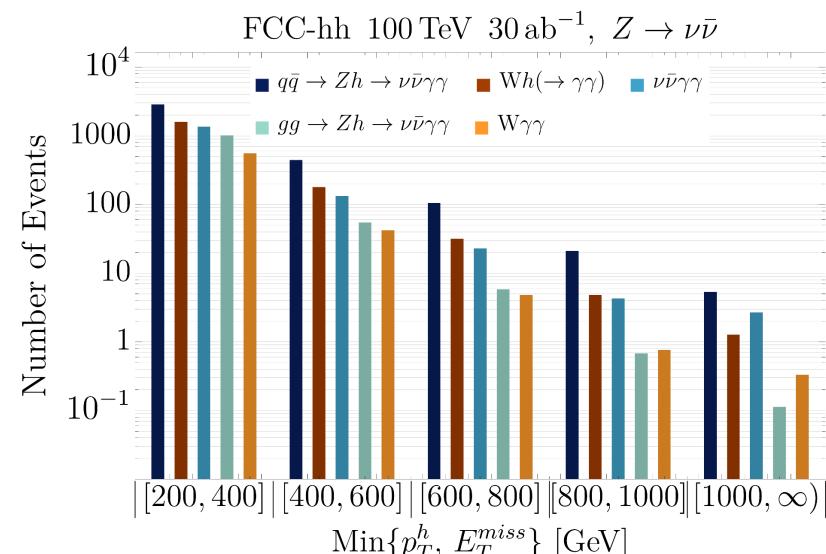
Cut	Channel		
Cut	$Z o u ar{ u}$	$Z \rightarrow l^+ l^-$	
$p_{T,\min}^j [\mathrm{GeV}]$	30		
$p_{T,\min}^{\gamma} [\mathrm{GeV}]$		50	
$p_{T,\mathrm{min}}^l$	0 30 (only for LO samples)		
$ \eta_{max}^{\gamma,j} $	6.1^{1}		
$ \eta_{max}^l $	∞ 6.1		
$\Delta R^{\ell,\gamma l}$	0.01		
$\Delta R^{\gamma\gamma}$	0.25 (0.01 for LO samples)		
$p_T^{V,j}$	$\{0, 200, 400, 600, 800, 1200, \infty\}$		

Analysis details

Selection cuts and binning:

Z o u	$ar{ u}$ Z -	$Z \rightarrow l^- l^+$	
Bins of $ y^h $	Bins of $min\{p_T^h, p_T^Z\}$	Bins of $ y^{Zh} $	
[0, 2), [2, 6]	[200, 400)		
[0, 2), [2, 0]	[400, 600)		
[0, 1.5), [1.5, 6]	[600, 800)	[0, 2), [2, 6]	
[0, 1), [1, 6]	[800, 1000)		
[0, 1), [1, 0]	$[1000, \infty)$		

	Selection cuts
$p_{T,\mathrm{min}}^{\ell} \; [\mathrm{GeV}]$	30
$p_{T,\mathrm{min}}^{\gamma} \; [\mathrm{GeV}]$	50
$m_{\gamma\gamma} [{ m GeV}]$	[120, 130]
$m_{l^+l^-}$ [GeV]	[81, 101]
$\Delta R_{ m max}^{\gamma\gamma}$	$\{1.3, 0.9, 0.75, 0.6, 0.6\}$
$\Delta R_{ m max}^{l^+l^-}$	$\{1.2, 0.8, 0.6, 0.5, 0.4\}$
$p_{T,\text{max}}^{Zh} \text{ [GeV]}$	{200,600,1100,1500,1900}


K-factors for signal in 1+QCD+QED format

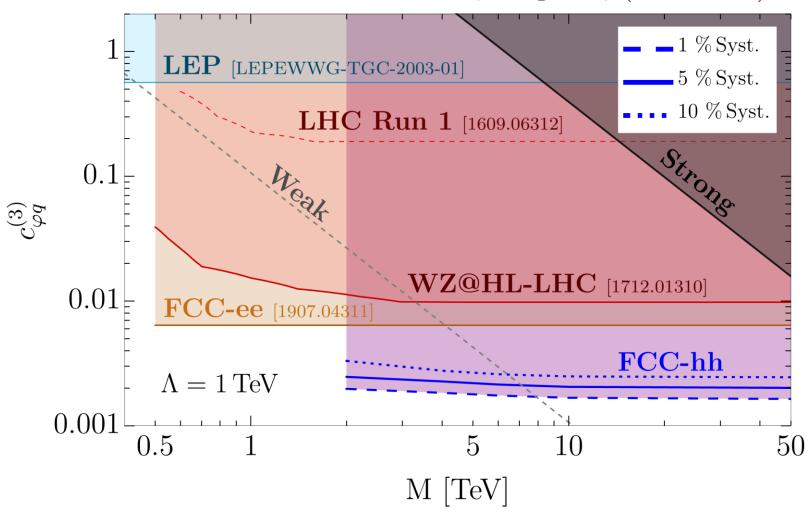
p_{Tmin} bin [GeV]	$Zh o \ell\ell\gamma\gamma$	$Zh o u u \gamma \gamma$	$Wh \to \nu \ell \gamma \gamma$
0-200	1 + 0.59 - 0.07 = 1.52	1 + 0.26 - 0.06 = 1.20	1 + 0.17 - 0.04 = 1.13
200-400	1 + 0.52 - 0.09 = 1.43	1 + 0.31 - 0.09 = 1.22	1 + 0.28 - 0.09 = 1.19
400 - 600	1 + 0.64 - 0.14 = 1.50	1 + 0.37 - 0.14 = 1.23	1 + 0.28 - 0.17 = 1.11
600 - 800	1 + 0.69 - 0.18 = 1.51	1 + 0.40 - 0.18 = 1.22	1 + 0.35 - 0.24 = 1.11
800 - 1000	1 + 0.70 - 0.24 = 1.46	1 + 0.40 - 0.24 = 1.16	1 + 0.39 - 0.32 = 1.07
$1000-\infty$	1 + 0.69 - 0.32 = 1.37	1 + 0.40 - 0.32 = 1.08	1 + 0.36 - 0.40 = 0.96

Zh.

More results

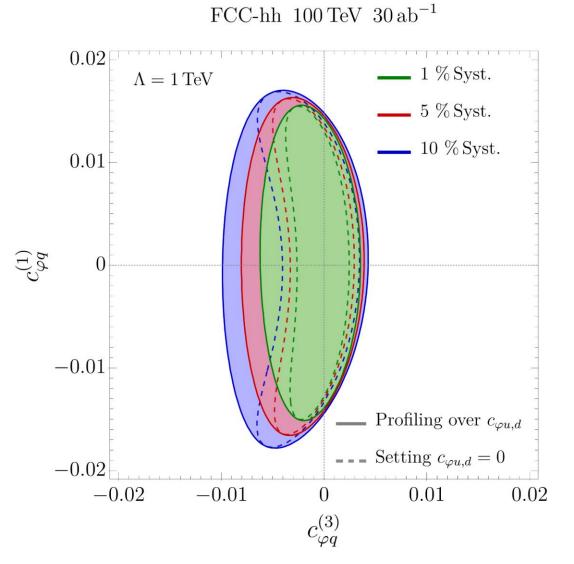
Events per bin for the relevant processes in the neutrino channel. Wh is part of the signal because it is affected by $o_{\varphi q}^{(3)}$. $FCC_{-}hh_{-}100\,TeV_{-}30\,ah^{-1}_{-}Z \rightarrow \nu\bar{\nu}$

Events per bin for the relevant processes in the leptonic channel.

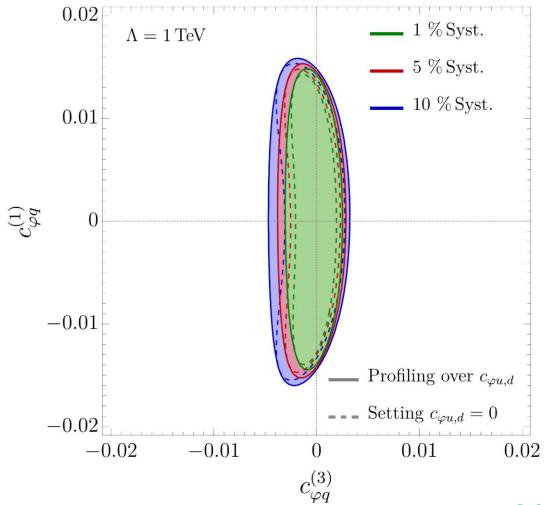


Zh. + Wh.

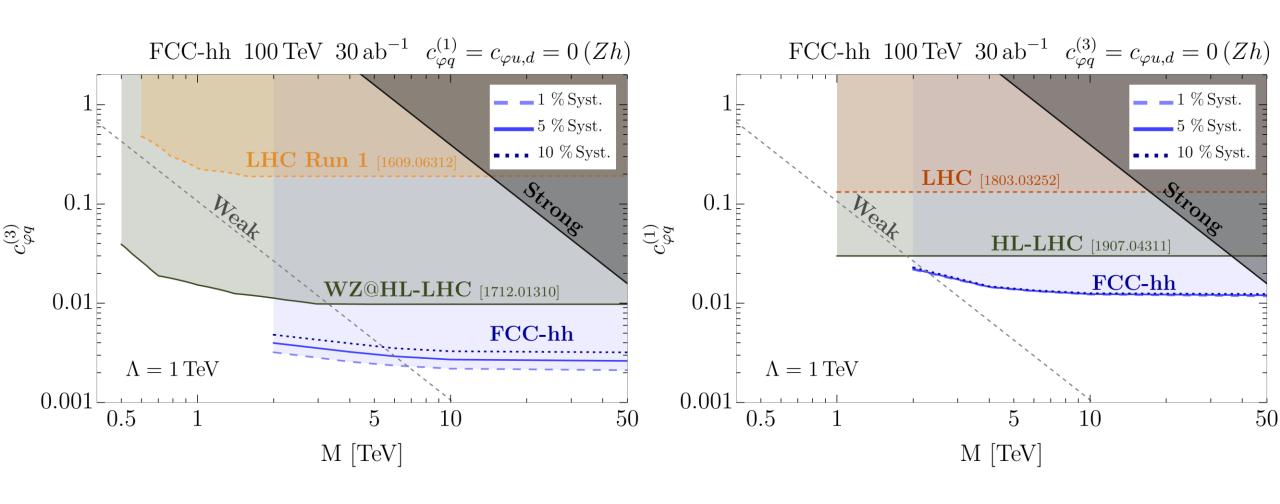
More results


Bounds on $\mathcal{O}_{\varphi q}^{(3)}$ with one operator fit combiningthe Wh and Zh processes as a function of the NP scale M.

FCC-hh
$$100 \,\text{TeV} \, 30 \,\text{ab}^{-1}$$
, 1-op. fit, $(Zh + Wh)$



95% CL bounds



FCC-hh $100 \,\text{TeV} \, 30 \,\text{ab}^{-1} \, (Zh + Wh)$

95% CL bounds

95% CL bounds summary

Coefficient	Profiled Fit		One Operator Fit	
$c_{arphi q}^{(3)}$	$[-5.2, 3.1] \times 10^{-3}$	1% syst.	$[-2.1, 2.0] \times 10^{-3}$	1% syst.
	$[-6.7, 3.3] \times 10^{-3}$	5% syst.	$[-2.6, 2.4] \times 10^{-3}$	5% syst.
	$[-8.2, 3.7] \times 10^{-3}$	10% syst.	$[-3.2, 2.8] \times 10^{-3}$	10% syst.
$c_{\varphi q}^{(3)} \\ (+Wh)$	$[-2.5, 2.1] \times 10^{-3}$	1% syst.	$[-1.6, 1.6] \times 10^{-3}$	1% syst.
	$[-3.0, 2.4] \times 10^{-3}$	5% syst.	$[-2.0, 1.9] \times 10^{-3}$	5% syst.
	$[-3.7, 2.7] \times 10^{-3}$	10% syst.	$[-2.4, 2.2] \times 10^{-3}$	10% syst.
$c_{arphi q}^{(1)}$	$[-1.3, 1.4] \times 10^{-2}$	1% syst.	$[-1.1, 1.15] \times 10^{-2}$	1% syst.
	$[-1.5, 1.5] \times 10^{-2}$	5% syst.	$[-1.1, 1.2] \times 10^{-2}$	5% syst.
	$[-1.6, 1.5] \times 10^{-2}$	10% syst.	$[-1.2, 1.2] \times 10^{-2}$	10% syst.
$c_{arphi u}$	$[-2.0, 1.6] \times 10^{-2}$	1% syst.	$[-1.9, 0.89] \times 10^{-2}$	1% syst.
	$[-2.1, 1.7] \times 10^{-2}$	5% syst.	$[-2.1, 0.96] \times 10^{-2}$	5% syst.
	$[-2.2, 1.8] \times 10^{-2}$	10% syst.	$[-2.2, 1.0] \times 10^{-2}$	10% syst.
$c_{arphi d}$	$[-2.1, 2.3] \times 10^{-2}$	1% syst.	$[-1.4, 2.2] \times 10^{-2}$	1% syst.
	$[-2.2, 2.4] \times 10^{-2}$	5% syst.	$[-1.5, 2.2] \times 10^{-2}$	5% syst.
	$-[-2.3, 2.5] \times 10^{-2}$	10% syst.	$[-1.5, 2.2] \times 10^{-2}$	10% syst.