Searches for Higgs boson pair production with the full LHC Run 2 dataset in ATLAS

Summary Slides

HH production at the LHC

Non-resonant: search for SM *HH* production targeting two mechanism:

- ggF sensitive to k_t and k_λ
- VBF sensitive to k_{λ} , k_{V} and k_{2V}

Resonant: search for BSM $X \to HH$ (ggF+VBF channel), where $m_X \in [251,3000]$ GeV

Gluon-gluon fusion (ggF) HH production $\sigma_{SM}^{ggF}=31.05^{+2.2\%}_{-0.5\%}$ fb at $\sqrt{s}=13$ TeV

Vector boson fusion (VBF) HH production $\sigma_{SM}^{VBF}=1.723^{+0.03\%}_{-0.04\%}\pm2.1\%$ fb at $\sqrt{s}=13$ TeV

	bb	ww	ττ	ZZ	үү
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

HH decay modes and their total relative branching ratios 10.23731 / CYRM-2017-002

Non resonant *HH* production searches

Multivariate techniques used to separate signal from background resulting in improvements w.r.t increased luminosity along with better object reconstruction

95% CL on k_{λ} (ggF+VBF)

Lumi	Observed	Expected
139fb^{-1}	[-1.0,6.6]	[-1.2,7.2]

- ggF only considered for $b\bar{b}\ell\nu\ell\nu$
- ggF + VBF are considered where, $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ being ggF optimized while $b\bar{b}b\bar{b}$ is VBF optimized
- Constraints are set on $k_{\lambda} = \lambda_{HHH}/\lambda_{HHH}^{SM}$ by $b\bar{b}\gamma\gamma$
- Constraints are set on σ_{ggF} by $b\bar{b}\ell\nu\ell\nu$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$
- Additional constraints on $k_{2V}=c_{2v}/c_{2v}^{SM}$ by $b\bar{b}b\bar{b}$

```
*b\bar{b}\ell\nu\ell\nu PLB 801(2020)135145 @ 139 fb<sup>-1</sup>
```

^{*} $b\bar{b}b\bar{b}$ JHEP07(2020)108 @ 126 fb⁻¹

^{*} $b\bar{b}\tau^{+}\tau^{-}$ ATLAS-CONF-2021-030 @ 139 fb⁻¹

^{*} $b\bar{b}\gamma\gamma$ ATLAS-CONF-2021-016 @ 139 fb⁻¹

^{*}Combination ATLAS-CONF-2021-052 @ 139 fb^{-1}

Resonant HH production searches

The main hypotheses considered in ATLAS publications are:

- Narrow-width spin = 0 resonances
- Kluza-Klein graviton in the bulk Randall-Sundrul model with spin = 2 (only considered by $b\bar{b}b\bar{b}$)

Similar procedures w.r.t to the non-resonant searches Each analysis lead the sensitivity in different m_X regions

Detailed Slides

SM *HH* production at the LHC

Non-resonant HH production is predicted by the SM with a small predicted cross-section due to destructive interference. The observation of the HH production is a direct probe of the Higgs boson self-coupling along with the VVHH coupling.

<u>Vector boson fusion (VBF)</u> HH production $\sigma_{SM}^{VBF}=1.723^{+0.03\%}_{-0.04\%}\pm2.1\%$ fb at $\sqrt{s}=13$ TeV

Resonant *HH* production at the LHC

Resonant HH production through ggF is the main mode considered at the LHC. Public results using full Run 2 dataset are $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$. The main hypotheses considered in ATLAS publications are:

- Narrow-width spin = 0 resonances
- Kluza-Klein graviton in the bulk Randall-Sundrul model with spin = 2

Resonant ggFHH production

Resonant VBF HH production considered by $b\bar{b}b\bar{b}$ in JHEP07(2020)108

Non-Resonant production

Decay channel and Run 2 data set public results

HH decay modes and their total relative branching ratios10.23731 / CYRM-2017-002

	bb	WW	ττ	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

- ggF only considered for $b\bar{b}\ell\nu\ell\nu$
- ggF + VBF are considered where, $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ being ggF optimized while $b\bar{b}b\bar{b}$ is VBF optimized
- Constraints are set on $k_\lambda=\lambda_{HHH}/\lambda_{HHH}^{SM}$ by $b\bar b\gamma\gamma$ and $b\bar b\tau^+\tau^-$
- Constraints are set on σ_{ggF} by $b \bar b \ell \nu \ell \nu$, $b \bar b \tau^+ \tau^-$ and $b \bar b \gamma \gamma$
- Additional constraints on $k_{2V}=c_{2v}/c_{2v}^{SM}$ by $b\bar{b}b\bar{b}$

```
*b\bar{b}\ell\nu\ell\nu PLB 801(2020)135145 @ 139 fb<sup>-1</sup>
```

^{*} $b\bar{b}b\bar{b}$ JHEP07(2020)108 @ 126 fb⁻¹

^{*} $b\bar{b}\tau^{+}\tau^{-}$ ATLAS-CONF-2021-030 @ 139 fb⁻¹

^{*} $b\bar{b}\gamma\gamma$ ATLAS-CONF-2021-016 @ 139 fb⁻¹

^{*}Combination ATLAS-CONF-2021-052 @ 139 fb⁻¹

VBF $HH \rightarrow b\bar{b}b\bar{b}$ (126 fb⁻¹)

- ullet The analysis is optimized for searches in the VBF HH production mode
- $\bullet \,\,$ ggF HH production is normalized to the SM expectation and added to the background
- Multijet data-driven background makes up for the 95% of the total background

95% CL limit on $\sigma_{VBF}/\sigma_{VBF}^{SM}$

Expected	Observed
550	840

95% CL allowed interval on k_{2V}

Expected	Observed
[-0.55,2.72]	[-0.43,2.56]

$HH \rightarrow b\bar{b}\ell\nu\ell\nu(139 \text{ fb}^{-1})$

- One $H \to b\bar{b}$ and other $H \to WW^*, ZZ^*, \tau\tau$
- Events requiring at least 2 b-jets and exactly 2 leptons
- Signal background separation performed with a multi-class neural network trained with $HH \to b \bar{b} WW^*$
- Events divided in 4 categories:
 - *HH*
 - Top
 - $Z \ell \ell$
 - $Z-\tau\tau$
- Discriminant d_{HH} is built from these categories

95% CL on $\sigma_{HH}/\sigma_{HH}^{SM}$ (ggF)

Channel	Observed	-1σ	Expected	$+1\sigma$
$bar{b}\ell u\ell u$	40	20	29	43

$HH \rightarrow b\bar{b}\tau^+\tau^-$ (139 fb⁻¹)

- Possible final states: $\tau_{\rm had}\tau_{\rm had}$ and $\tau_{\rm lep}\tau_{\rm had}$ (lepton can be electron or muon)
- Three signal regions (SRs) based on di- τ decay and trigger categories (two $\tau_{\rm had}$ and $e/\mu + \tau_{\rm had}$)
- Main background are fakes $\tau_{\rm had}$ from misidentified jets (multijet, W+jets and $t\bar{t}$) that are estimated using data-driven techniques
- Contributions from non-fake backgrounds are evaluated using MC samples
- Signal / background separation is based on multivariate (MVA) techniques:
 - Neural Network (NN) and Boosted Decision Trees (BDTs)
 - Input variables depending on the channel

ATLAS-CONF-2021-030

NN score

$HH \rightarrow b\bar{b}\tau^+\tau^-$ (139 fb⁻¹)

• MVA score is used as final discriminant in the fit 95% CL on $\sigma_{HH}/\sigma_{HH}^{SM}$ (ggF+VBF)

Channel	Observed	-1σ	Expected	+1σ
$ au_{ m had} au_{ m had}$	4.95	3.19	4.43	6.17
$ au_{ m lep} au_{ m had}$	9.16	5.66	7.,86	10.9
Combined	4.65	2.79	3.87	5.39

95% CL on k_{λ} (ggF+VBF)

Lumi	Observed	Expected
$139 \; \text{fb}^{-1}$	[-2.4,9.2]	[-2.0,9.0]

- Factor \sim 4 improvement compared to 36 fb⁻¹ (PRL 121(2018)191801):
 - Previous result exp. 14.8, obs. 12.7
 - Half due to luminosity increase
 - Half due to improved τ_{had} and b-jet reconstruction and identification and analysis-level improvements

$HH \rightarrow b\bar{b}\gamma\gamma(139 \text{ fb}^{-1})$

- Event pre-selection is based on di-photon trigger, 2 good photons and b-jet requirements
- Events are divided into low di-Higgs mass region and high di-Higgs mass region:
 - Low mass region aims large $|k_{\lambda}|$ searches
 - High mass region is more sensitive to SM and small values of $|k_{\lambda}|$
- BDTs are trained on $k_{\lambda}=1{,}10$ against main backgrounds ($\gamma\gamma$ +jets, $t\bar{t}H$, ZH and WH)
- A total of four categories are defined based on:
 - Low mass region:
 - Tight BDT score cut
 - Loose BDT score cut
 - High mass region:
 - Tight BDT score cut
 - Loose BDT score cut

$HH \rightarrow b\bar{b}\gamma\gamma(139 \text{ fb}^{-1})$

- Signal extracted from fitting the $m_{\gamma\gamma}$ distribution
- Signal and single-Higgs background $m_{\gamma\gamma}$ are modelled using a double-sided Crystal Ball function
- Continuum $\gamma\gamma$ background is modelled using an exponential function fitting the data sidebands

95% CL on $\sigma_{HH}/\sigma_{HH}^{SM}$ (ggF+VBF)

Channel	Observed	Expected
$bar{b}\gamma\gamma$	5.5	4.1

95% CL on k_{λ} (ggF+VBF)

Lumi	Observed	Expected
$139 \; \text{fb}^{-1}$	[-2.4,7.7]	[-1.5,6.7]
36 fb^{-1}	[-5.8,12.0]	[-5.0,12.0]

A factor 4 improvement w.r.t previous result JHEP(2018)040 due to improved luminosity, b-jet reconstruction and analysis optimizations

Combination Summary

• Two analyses already improving previous combination ($\sigma_{HH}/\sigma_{HH}^{SM}$ = 6.9 Obs, 10 Exp)

More results with full Run 2 dataset yet to be published. Stay

tuned!

Resonant production

Resonant $HH \rightarrow b\bar{b}b\bar{b}$ (126 fb⁻¹ – 139 fb⁻¹)

Resolved:

- Resonances ranging $m_X \in [251,1500]$ GeV
- Four classes based on triggers: high- E_T b-jet, 2 b-jet+jet, high- E_T and 2b-jet+2jets
- BDTs are used to pair b-jets
- Data-driven background (\sim 95% multijet, rest $t\bar{t}$):
 - · NN reweighting correction applied

Boosted:

- Resonances ranging $m_X \in [900,3000]$ GeV
- Atleast two large-radius jet requirement
- Three categories 2b, 3b and 4b where a large-radius jet is matched to 1 or 2 b-tagged track jets
- Multijet background is data-driven
- $t\bar{t}$ backround is simulated

ATLAS-CONF-2021-035

Resonant $HH \rightarrow b\bar{b}b\bar{b}$ (126 fb⁻¹ – 139 fb⁻¹)

- Signal Regions are defined in the m_{H_1} , m_{H_2} plane
- Variable m_{HH} is used as discriminant variable

Bulk Randal—Sundrum model graviton excluded $(k/\overline{M}_{Pl}=1)$ at 95% CL

	Mass Range (GeV)
ATLAS-CONF-2021-035	298-1440
PLB800(2020)135103	310-1380

Resonant $HH \rightarrow b\bar{b}\tau^+\tau^-(139 \text{ fb}^{-1})$

- Signal / background separation is based on a parametric neural network (PNNs)
 - · Resonance mass is parametrized in the NN
 - Input variables depending on the channel
- MVA score is used as final discriminant in the fit
- Local excess at 1.0 (1.1) TeV in the $au_{
 m had} au_{
 m had}$ ($au_{
 m lep} au_{
 m had}$) channel of 2.8 σ (1.5 σ)
- Combined excess at 1 TeV local (global) of 3.0σ (2.0 σ)

Resonant $HH \rightarrow b\bar{b}\gamma\gamma(139 \text{ fb}^{-1})$

- BDTs trained separately against $\gamma\gamma$ and single-Higgs background and combined in quadrature:
 - All resonances are merged as signal for the BDT training and reweighted to match m_{HH} background distribution
- A category defined for each resonance based on:
 - BDT Score cut
 - Resonance mass
- $m_{\gamma\gamma}$ variable is used as discriminant

σ upper limit at 95% CL	Observed	Expected
ATLAS-CONF-2021- 016	610-47	360-43
JHEP11(2018)040	1140-120	900-150

m_x [GeV]

ATLAS-CONF-2021-016

Summary of resonant spin-0 limits

- The three shown analyses leads the sensitivity in different m_X regions
- All three analyses are already improving the previous combination

Conclusions

- Three analyses have been updated to use full Run 2 dataset : $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$
- All three analyses represent improvements a part from the increased luminosity:
 - Better object reconstruction
 - Better techniques used in the analyses
- All new analyses are improving the previous $36 \, {\rm fb}^{-1}$ combination results
- Stay tune for more results and their combinations!

Back up