

Search for Higgs Boson Pair Production in the $b\bar{b}\tau^+\tau^-$ Final State with the ATLAS Detector

Christopher Deutsch (on behalf of the ATLAS collaboration) October 19, 2021

University of Bonn

Higgs Boson Pair Production

- Direct measurement of self-coupling κ_{λ} \rightarrow access to Higgs potential
- Small cross section $\sigma_{HH}^{ggF} = 31.05 \,\text{fb}^*$ in SM due to destructive interference
 - + VBF contribution $\sigma_{HH}^{\rm VBF} =$ 1.726 fb [†] also considered

*: NNLO QCD, $m_h = 125$ GeV, pp @ 13 TeV, J. High Energ. Phys. **2018**, 59 (2018) †: N³LO QCD, $m_h = 125$ GeV, pp @ 13 TeV, Phys. Rev. D **98**, 114016

- Resonant enhancement in BSM scenarios
- Benchmark model: Narrow-width CP-even scalar X
 251 GeV ≤ m_X ≤ 1.6 TeV

The b $ar{\mathbf{b}} au^+ au^-$ Final State

	bb	W^+W^-	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$
bb	34 %				
W^+W^-	25 %	4.6 %			
$\tau^+ \tau^-$	7.3 %	2.7 %	0.39 %		
ZZ^*	3.1 %	1.1 %	0.33 %	0.069 %	
$\gamma\gamma$	0.26 %	0.097 %	0.028 %	0.012 %	0.00052 %

Di-Higgs Branching Ratios

BR for $m_h = 125 \text{ GeV}$ from LHCHXSWG

Di-Tau Branching Ratios

- $HH \rightarrow b\bar{b}\tau^+\tau^-$ third largest BR of relevant channels
- High sensitivity to SM Higgs pair production
- Targeting semi-leptonic ($\tau_{lep}\tau_{had}$) and fully hadronic ($\tau_{had}\tau_{had}$) di-tau final states

$ au_{had} au_{had}$	$ au_{ ext{lep}} au_{ ext{had}}$ (SLT)	$ au_{ m lep} au_{ m had}$ (LTT)		
single & di- $ au_{ m had}$ triggers exactly two $ au_{ m had}$ lepton-veto	single ℓ triggers exactly one $ au_{bb} < m_{bb} < 0$	$\ell + au_{ m had}$ triggers _{ad} & one e or μ 150 GeV		
trigger-dependent thresholds on $e/\mu/ au_{ m had}$ and jets $m_{ au au}^{ m MMC}>$ 60 GeV 2 b -tagged jets				

OS el. charge of $au_e/ au_\mu/ au_{
m had}$ and $au_{
m had}$

Acceptance of non-res. HH (SM):

Channel	$(\mathcal{A} imes arepsilon)_{ ext{SM HH}}^{ ext{ggF+VBF}}$
$ au_{ ext{had}} au_{ ext{had}} \ au_{ ext{lep}} au_{ ext{had}} \ (ext{SLT}) \ au_{ ext{lep}} au_{ ext{had}} \ (ext{LTT})$	4 % 4 % 1 %
	ATLAS-CONF-2021-030

Event Selection

Acceptance of non-res. HH (SM):

Channel	$(\mathcal{A} imes arepsilon)_{ ext{SM HH}}^{ ext{ggF+VBF}}$
$ au_{ ext{had}} au_{ ext{had}} \ au_{ ext{lep}} au_{ ext{had}} ext{(SLT)} \ au_{ ext{lep}} au_{ ext{had}} ext{(LTT)}$	4 % 4 % 1 %
	ATLAS-CONF-2021-030

Background Estimation

Background	$ au_{ m had} au_{ m had} ext{-}channel$	$ au_{ ext{lep}} au_{ ext{had}} ext{-channel}$	
tī	Simulation (normalized in fit)		
Z+jets	Simulation (normalized in fit – dedicated CR)		
jet $ ightarrow au_{ m had}$ fakes ($tar{t}$)	Simulation (data-driven mis-ID eff.)	Combined fake-factor method	
jet $ ightarrow au_{ m had}$ fakes (multi-jet)	Fake-factor method		
SM Higgs / Other	Simulation		

Signal Extraction: Non-Resonant Higgs Pair Production

- Signal / background classifiers provide discriminant for likelihood fit $\tau_{had}\tau_{had}$: Boosted Decision Trees $\tau_{lep}\tau_{had}$: Neural Networks
- Trained on signal vs. all backgrounds using high-level variables: E.g. m_{HH} , m_{bb} , $m_{\tau\tau}^{MMC}$, $\Delta R(\tau, \tau)$, ...

Signal Extraction: Resonant Higgs Pair Production

Baldi et al., Eur. Phys. J. C **76**, 235 (2016). $x_1 - 0$ $x_2 - 0$ $f(x_1, x_2, \theta)$

- Approach similar to non-resonant case
- Parametrized neural networks (PNN) used as discriminant
 - Parametrized in mass of scalar ($\theta = m_X$)
- Provides single classifier (per channel) for all considered $m_{\rm X}$

- Uncertainty on signal strength statistically dominated
- Leading systematic sources (non-res. HH): MC statistics Top / Single Higgs modelling

Search for $X \rightarrow HH$:

- Similar picture
- Depending on *m_X*: Fake-τ_{had},
 Z+jets, signal modeling up to 30 %

Relative uncertainty explained by source:

Uncertainty source	Non-resonant HH
Data statistical	81%
Systematic	59%
$t\bar{t}$ and $Z + HF$ normalisations	4%
MC statistical	28%
Experimental	
Jet and E_{T}^{miss}	7%
b-jet tagging	3%
$\tau_{\rm had-vis}$	5%
Electrons and muons	2%
Luminosity and pileup	3%
Theoretical and modelling	
Fake- $\tau_{had-vis}$	9%
Top-quark	24%
$Z(\rightarrow \tau \tau) + HF$	9%
Single Higgs boson	29%
Other backgrounds	3%
Signal	5%
ATLAS-CONF-2021-030 $\sqrt{\Delta \mu_{ ext{tot}}^2 - \Delta \mu_{ ext{categ}}^2}$	
A	

Results & Conclusion

Cross section upper limits on

- Upper limit on $\sigma_{HH}^{ggF+VBF}$: obs. 4.7 × σ_{SM} (exp. 3.9 × σ_{SM})
 - Highest expected sensitivity to date
- Upper limits on $\sigma_{X \rightarrow HH}$ for narrow-width scalars ranging from approx. 20–10³ fb
 - · Largest excess at 1 TeV with local (global) significance of 3.0 σ (2.0 σ)

$HH ightarrow b ar{b} au_{\mu} au_{ m had}$ candidate event

Run: 351223 Event: 1338580001 2018-05-26 17:36:20 CEST

$HH \rightarrow b \bar{b} \tau_{had} \tau_{had}$ candidate event

Run: 339535 Event: 996385095 2017-10-31 00:02:20 CEST

Discussion Session

Summary for Discussion Session

Backup

Selection

Thad Thad Ca	tegory	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm lep} \tau_{\rm had}$ categories			
STT	DTT	SLT	LTT			
	e/μ se	lection				
No loose e/μ with	h $p_{\rm T} > 7 {\rm GeV}$	Exactly one tig	ht <i>e</i> or medium μ			
	1 -	$p_{\pi}^{e} > 25.27 \text{ GeV}$	18 GeV $< p_{\pi}^{e} < SLT$ cut			
		$p^{\mu} > 21.27 \text{ GeV}$	$15 \text{ GeV} < p^{\mu} < \text{SLT cut}$			
		$ r_1^e < 2.47$ not	$1.37 < \ln^{e} < 1.52$			
		$ \eta \leq 2.47$, not	$1.57 < \eta \eta = 1.52$			
		147 1	< 2.1			
	$ au_{ m had-vis}$ s	selection				
Two loose	τ _{had-vis}	One loose $\tau_{had-vis}$				
$ \eta < 2$	2.5	$ \eta < 2.3$				
$p_{\rm T} > 100, 140, 180 (25) {\rm GeV}$ $p_{\rm T} > 40 (30) {\rm GeV}$		$p_{\rm T} > 20 { m ~GeV}$	$p_{\rm T} > 30 { m ~GeV}$			
	Jet sel	ection				
	≥ 2 jets with	th $ \eta < 2.5$				
$p_{\rm T} > 45 \; (20) \; {\rm GeV}$	Trigger dependent	$p_{\rm T} > 45 \ (20) \ {\rm GeV}$	Trigger dependent			
	Event-leve	el selection				
	Trigger requir	ements passed				
Collision vertex reconstructed						
	$m_{\tau\tau}^{\rm MMC} >$	60 GeV				
	Opposite-sign electric charges of $e/\mu/\tau_{\rm brid}$ vis					
	Exactly two	b-tagged jets				
	5	$m_{bb} < m_{bb}$	150 GeV			

Variable	$\tau_{\rm had}\tau_{\rm had}$	$\tau_{\rm lep}\tau_{\rm had}$ SLT	$\tau_{\rm lep}\tau_{\rm had}$ LTT
m_{HH}	1	1	1
$m_{ au au}^{ m MMC}$	✓	1	1
m_{bb}	✓	1	1
$\Delta R(\tau, \tau)$	1	✓	1
$\Delta R(b,b)$	1	✓	
$\Delta p_{\mathrm{T}}(\ell, \tau)$		\checkmark	1
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		\checkmark	
m_{T}^W		1	
$E_{\mathrm{T}}^{\mathrm{miss}}$		1	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		1	
$\Delta \phi(au au, bb)$		1	
$\Delta \phi(\ell, {f p}_{ m T}^{ m miss})$			1
$\Delta \phi(\ell \tau, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1
S_{T}			1

Uncertainty Breakdown

Table 4: Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the groups of uncertainties.

Uncertainty source	Non-resonant HH	300 GeV	Resonant $X \to HH$ 500 GeV	1000 GeV	
Data statistical	81%	75%	89%	88%	
Systematic	59%	66%	46%	48%	
$t\bar{t}$ and Z + HF normalisations	4%	15%	3%	3%	
MC statistical	28%	44%	33%	18%	
Experimental					
Jet and $E_{\rm T}^{\rm miss}$	7%	28%	5%	3%	
b-jet tagging	3%	6%	3%	3%	
$\tau_{had-vis}$	5%	13%	3%	7%	
Electrons and muons	2%	3%	2%	1%	
Luminosity and pileup	3%	2%	2%	5%	
Theoretical and modelling					
Fake- $\tau_{had-vis}$	9%	22%	8%	7%	
Top-quark	24%	17%	15%	8%	
$Z(\rightarrow \tau \tau) + HF$	9%	17%	9%	15%	
Single Higgs boson	29%	2%	15%	14%	
Other backgrounds	3%	2%	5%	3%	
Signal	5%	15%	13%	34%	

Additional Plots for SLT

Additional Plots for LTT (1)

Additional Plots for LTT (2)

Table 5: Observed and expected upper limits at 95% CL on the cross-section of non-resonant *HH* production according to SM-like kinematics, and on the cross-section of non-resonant *HH* production divided by the SM prediction. The $\pm 1 \sigma$ and $\pm 2 \sigma$ variations around the expected limit are also shown.

		Observed	-2 σ	-1σ	Expected	+1 σ	+2 σ
$ au_{ m had} au_{ m had}$	$\sigma_{ m ggF+VBF}$ [fb] $\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	145 4.95	70.5 2.38	94.6 3.19	131 4.43	183 6.17	245 8.27
$ au_{\mathrm{lep}} au_{\mathrm{had}}$	$\sigma_{ m ggF+VBF}$ [fb] $\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	265 9.16	124 4.22	167 5.66	231 7.86	322 10.9	432 14.7
Combined	$\sigma_{ m ggF+VBF}$ [fb] $\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	135 4.65	61.3 2.08	82.3 2.79	114 3.87	159 5.39	213 7.22