

Higgs21

Searches for resonant and non-resonant Higgs boson pair production in the four bottom quark final state at 13 TeV

Angela Taliercio on behalf of CMS collaboration

Introduction: search for double Higgs boson production

- In Standard Model destructive interference of triangle and box contributions → tiny cross section → Experimentally very challenging
- The direct measure of λ is a strong test of the SM prediction (λ -0.13 from theoretical SM prediction)

[Eq 1]
$$V\left(\phi^{\dagger}\phi\right) = \mu^{2}\phi^{\dagger}\phi + \lambda\left(\phi^{\dagger}\phi\right)^{2}$$

$$\sigma_{\rm SM}^{\rm HH} = 31.05^{+5\%}_{-7\%}$$
 fb (scale \oplus PDF \oplus $\alpha_S \oplus$ m_t)

Since $\sigma_{HH^2} \propto \Lambda$, it is possible to measure Λ through the cross section of the double Higgs production

Introduction: HH production in the SM

HH gluon-gluon fusion production

HH VBF fusion production

- Gluon fusion: dominant production mode
- Large destructive interference → tiny cross section

HH searches in CMS

HH decay modes being explored using the 2016 data (36 fb⁻¹):

- HH→4b
- HH→bbγγ
- HH→bbττ
- HH→bbVV (V=Z,W)

2016 combination results

95% CL limit on non-resonant HH production signal strength:

• Observed: 22.2

• Expected: 12.8

Constrain on k_A:

• Observed: $-11.8 < k_{\lambda} < 18.8$

• Expected: $-7.1 < k_{\Lambda} < 13.6$

RunII HH combination ongoing!

HH → 4b: analysis strategy

- Targeting Higgs self coupling and VVHH coupling:
 - gluon-gluon fusion and VBF categories

- The highest source of background is QCD and tt:
 - background estimated from data

 Signal and control regions, are divided in 4b and 3b region → the b-jet candidate with the lowest DeepJet output to satisfy (or fail) the medium working point

HH → 4b: analysis strategy

- Background events in the A_{4bSR} region are modelled from events in the A_{3bSR} region: BDT is trained in the A_{4bCR} and A_{3bCR} regions, and applied to events in A_{3bSR} to model A_{4bSR}
- Another BDT is trained to separate from the signal the weighted A_{3bSR} background events

HH → 4b: results

• A binned maximum likelihood fit is simultaneously performed in the four categories (depending on the mass of HH and on the production process) to extract the results

Results:

- •upper limit on the cross section $\rightarrow \sigma(pp \rightarrow HH \rightarrow 4b) < 3.6 (7.3) \times SM$ obs. (exp.)
- κ_{λ} constraint $\rightarrow -2.3 < \kappa_{\lambda} < 9.4 (-5.0 < \kappa_{\lambda} < 12.0)$
- κ_{2V} constraint $\rightarrow -0.1 < \kappa_{2V} < 2.2 (-0.4 < \kappa_{2V} < 2.5)$

HH → 4b boosted: analysis strategy

- Results on the k_v and k_{2v} couplings:
 - VBF specific category high sensitivity on κ_{2V} coupling

- main backgrounds: QCD and tt estimated from CRs and MC
- The main challenge is the efficient reconstruction of H→bb:
 - first analysis to apply the ParticleNet classifier

HH → 4b boosted: analysis strategy

The main challenge is the efficient reconstruction of $H\rightarrow bb$: first analysis to apply the ParticleNet classifier

assigning a number of output scores for each jet, corresponding to the probability that the jet is induced by a given process

Discriminate between large-radius jets from genuine H

→bb decays and those from QCD multijet processes → 3

categories are defined: high - medium - low purity

Highest sensitivity to κ_{2V} coupling

HH → 4b boosted: results

• A binned maximum-likelihood fit using the m_{HH} templates is performed simultaneously with all SR and CR event categories

Results:

- κ_{2V} constraint \rightarrow 0.6 < κ_{2V} < 1.4 (obs. and exp.) at 95% CL
- κ_{2V} = 0 excluded at more than 95% CL for κ_V > 0.5 and all other κ = 1

$X \rightarrow HH \rightarrow 4b$: analysis strategy

• Massive BSM resonance X that then decays to a Higgs boson pair $(X \rightarrow HH)$

- BSM scenarios that predict the existence of resonances (models with a warped extra dimension):
 - spin-0 radion
 - spin-2 first Kaluza-Klein (KK) excitation of the graviton

multijet production and tt +jets backgrounds → estimated in data

$X \rightarrow HH \rightarrow 4b$: analysis strategy

- H-tagged DNN for resolved and semiresolved topology:
 - · reduced mass:

$$m_{\rm red} \equiv m_{\rm JJ} - (m_{\rm J} - m_{\rm H}) - (m_{\rm J_2} - m_{\rm H})$$

• m_J m_{J2} : masses of the leading and subleading H-tagged jets

- The reduced mass is used to reduce the fluctuations caused by jet energy and mass resolutions
- •8-10% improvement in the dijet mass resolution

$X \rightarrow HH \rightarrow 4b$: results

- A likelihood fit to data is used to test the signal hypothesis
- Background model is constructed as a sum of the individual background contributions using a Poisson distribution for each bin of the (m_J, m_{red})

The upper limits range from on the cross section for the mass range 1-3 TeV:

- •4.94 to 0.19 fb for the bulk graviton
- •9.74 to 0.29 fb for the radion

Summary

Di-Higgs production investigation in 4b final state:

Advantage

largest branching ratio

Disadvantage

large QCD background → <u>background model techniques based on DNN crucial</u>

