Exotic Higgs decays at CMS Higgs 2021

Tanvi Wamorkar on behalf of the CMS collaboration

Northeastern University

Introduction

- 125 GeV Higgs boson discovered by CMS and ATLAS experiments in 2012
- the Higgs signal strength

• Data collected during Run 1 and Run 2 of the LHC used for experimental measurements of

- SM is a highly successful theory, but it has several shortcomings
- Non-exhaustive list
 - Absence of gravity
 - Absence of explanation for Dark Matter
 - CP violation
 - The Hierarchy problem

Higgs as a probe for BSM physics

Search for new BSM particles

Neutral or charged exotic Higgs bosons

Decays of Higgs to SM particles

- Rare decays predicted by the SM
 - Excess would point to BSM physics
- Decays forbidden in the SM
 - Lepton flavor violating (LFV) decays of the Higgs

Decays of Higgs to non-SM particles

- Invisible decays of the Higgs
- Decays of the Higgs to light pseudoscalars, $H \rightarrow aa$, a decaying to SM that decay to SM particles

LFV decays: $H \rightarrow e\tau/\mu\tau$ arxiv:2105.03007

- LFV decays forbidden in the SM
 - SUSY and some composite Higgs model allow LFV Yukawa couplings $Y_{e\mu}, Y_{e\tau}, Y_{\mu\tau}$
- Channels and final states: $H \to \mu \tau_h, H \to \mu \tau_e, H \to e \tau_h, H \to e \tau_\mu$
- Categories:
 - $gg \rightarrow H$: 0 jet, 1 jet, 2 jets
 - $qq \rightarrow H$: 2 jets
- $Z \rightarrow \tau \tau$, top quark processes, mis-identified objects are the major backgrounds
 - Background estimation using data driven techniques + simulation
- BDT's trained in each channel separately
 - Maximum likelihood fit to BDT output discriminators
 - Simultaneously over all channels and categories

 $\mu \tau_h$, 2 jets VBF 137 fb⁻¹ (13 TeV) + Observed CMS Ζ→ττ $\mu \tau_{h}$, 2 jets VBF **Ζ→ee/**μμ tt,t+jets 5 10⁶ 10⁵ 10⁴ W+jets/QCD SM H - H→μτ (*B*=20%) Bkg. unc. 10^{3} 10^{2} 10 10 10 Еxр SdO 0.8 0.6 0.2 -0.4 -0.2 -0.6 0 **BDT** discriminant

4

LFV decays: $H \rightarrow e\tau/\mu\tau$ arxiv:2105.03007

• Results using full run 2 data

LFV decays: $H \rightarrow e\tau/\mu\tau$

• Also put constraints on Yukawa couplings

$$\Gamma\left(\mathbf{H} \to \ell^{\alpha} \ell^{\beta}\right) = \frac{m_{\mathrm{H}}}{8\pi} \left(\left| Y_{\ell^{\alpha} \ell^{\beta}} \right|^{2} + \left| Y_{\ell^{\beta} \ell^{\alpha}} \right|^{2} \right) 10^{-2}$$

$$\mathcal{B}\left(\mathbf{H} \to \ell^{\alpha} \ell^{\beta}\right) = \frac{\Gamma\left(\mathbf{H} \to \ell^{\alpha} \ell^{\beta}\right)}{\Gamma\left(\mathbf{H} \to \ell^{\alpha} \ell^{\beta}\right) + \Gamma_{\mathrm{SM}}}$$
here, $\ell^{\alpha}, \ell^{\beta}$ are different flavored leptons
$$10^{-4}$$

$$10^{-5}$$

$H \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$ <u>CMS-HIG-21-003</u>

- Light pseudoscalars are a possibility in various BSM scenarios
- In various BSM scenarios, coupling of a to fermions can lower $BR(a \rightarrow \gamma \gamma)$. But
 - Four photon final state provides a clean signature: low SM background
 - In some models, a may only decay into photons
- Analysis considers 4 fully resolved photons
 - m_a ranges from 15 to 60 GeV
 - Wide opening angle b.w photon pairs
- First CMS search in this final state
 - Previous result from ATLAS: EPJC 76 (2016) 210

$H \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$ <u>cms-hig-21-003</u>

- Strategy in a nutshell
 - Select events with 4 well isolated photons using a di-photon trigger
 - Construct Higgs candidate using the photons
 - $m_{\gamma\gamma\gamma\gamma}$ peaks around 125 GeV for signal
 - Signal extracted by fit to $m_{\gamma\gamma\gamma\gamma}$ distribution in data
- MVA based categorization
 - Utilize ID and kinematic information of the 4 photons
 - Background estimation using data-driven technique (only used for training)
 - Parametrized training
 - Output is uniform and sensitive to the complete m_a range

$H \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$ <u>CMS-HIG-21-003</u>

- Signal model
 - Signal shape for $m_{\gamma\gamma\gamma\gamma}$ constructed from simulation
 - Modeled using Double-sided crystal ball function

- Background model
 - Built directly using data (full run 2)
 - Using discrete profiling method
 - Choice of background pdf treated as discrete nuisance parameter
 - Unique background model constructed for each mass hypothesis

$H \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$ <u>CMS-HIG-21-003</u>

- Results
 - Set limits (95% CL) on $\sigma(pp \to H) \times BR(H \to aa) \times BR(a \to \gamma\gamma)^2$
 - m_a granularity of 0.5 GeV up to $m_a = 40$ GeV and 1 GeV for $m_a > 40$ GeV
 - No significant deviation from background-only hypothesis
 - Observed limits in agreement with expected limits within two standard deviations
- First result from CMS in this final state

10

Conclusions

- So far, no deviations from SM
- However,
 - physics
 - Rich set of $H \rightarrow aa$ searches being pursued by CMS
 - completed: See summary of results *here*
 - SUSY and composite Higgs being probed by LFV decays of the Higgs
- No significant excess or deviation
 - Exclude many scenarios, but some phase spaces are still uncovered
- just around the corner!) and beyond

• Searches involving the Higgs boson are a favorable place to search for signs of new

Many channels investigated using 2016 data and a few full run 2 results have been

• Experience and techniques gained from these analyses will help during Run 3 (which is

11

Backup

What is special about the Higgs?

- How standard is the Higgs boson?
 - Extremely narrow width $(\Gamma_h \sim 4.07 \text{ MeV}; \Gamma_h/m_h \sim 3.3 \times 10^{-5})$
 - Experimentally, Γ_h constrained at GeV scale
 - Small coupling to another light state can open up additional sizable decay modes
 - Good reasons to suspect that new physics couples preferentially to the Higgs boson

Two Higgs double + Scalar Singlet Model (2HDM+S)

- 2HDM one of the simplest extensions of SM
- After symmetry breaking, two Higgs doublets are created $\phi 1$, $\phi 2$ ۲
 - h, H: neutral Higgs bosons that are CP-even (scalar)
 - A: neutral Higgs Boson that is CP-odd (pseudoscalar)
 - H±: charged Higgs Boson
 - $tan\beta$: ratio of VEV of the two Higgs doublets
 - α : the mixing angle between the CP-even Higgs bosons
- Different types based on type of interaction of the doubles with quarks and charged lepton
- Complex scalar singlet only couples to the Higgs complex fields •
 - All couplings to SM fermions are through mixing of the scalar with the Higgs field
 - Small to preserve the SM nature of the Higgs sector

---- ττ $\mu\mu$ ----- gg YΥ ----- uu + dd + s

