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V = − (μ2
1Φ†Φ + μ2

2Φ̂†Φ̂) +
λ1

2 [(Φ†Φ)2 + (Φ̂†Φ̂)
2] + λ2 (Φ†Φ) (Φ̂†Φ̂)

The scalar potential is

These terms can be included so that 
the parity symmetry is broken softly.

Terms with mixing between ordinary 
and mirror doublet fields are 
excluded.
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2Φ̂†Φ̂) +
λ1

2 [(Φ†Φ)2 + (Φ̂†Φ̂)
2] + λ2 (Φ†Φ) (Φ̂†Φ̂)

The scalar potential is

After the symmetry breaking, the neutral Higgs boson squared 
mass matrix is

𝖬2
H0 = (2λ1v2 2λ2v ̂v

2λ2v ̂v 2λ2 ̂v2)
Thus, the neutral physical states are

(H
Ĥ) = ( cos α sin α

−sin α cos α) (Re[ϕ0]
Re[ ̂ϕ0])
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In this case the mixing angle for neutral scalar is given by

and the neutral scalar masses are

tan (2α) =
2λ2v ̂v

λ1 (v2 − ̂v2)

m2
H = λ1 (v2 + ̂v2) − λ2

1 (v2 − ̂v2)2 + 4λ2v2 ̂v2

m2
Ĥ

= λ1 (v2 + ̂v2) + λ2
1 (v2 − ̂v2)2 + 4λ2v2 ̂v2
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FERMIONS AND SCALAR FIELDS 
The renormalizable and gauge invariant interactions of the 
scalar doublets with the leptons are described by the Yukawa 
interactions, which takes the form for charged leptons

ℒℓ
Y = ∑
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λ′�ij
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jR + h . c .
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𝖥a 𝖦a) .
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Thus, the mass matrices can be diagonalized through unitary 
matrices Ua, for a = L,R; as

𝖬D = 𝖴†
L𝖬𝖴R .

We write Ua as

𝖴a = (𝖠a 𝖤a

𝖥a 𝖦a) .

Thus, the tree-level interactions of the neutral Higgs bosons H 
and H^ with the light fermions are given by

ℒl
Y =

g2

2 2
f i

L(𝖠†
L𝖠L)ij

ml

MW
f j
R (H cos α − Ĥ sin α)

+
g′�2

2
f i

L
ml

MW′�
(𝖥†

R𝖥R)ij f j
R (H sin α + Ĥ cos α) + h . c .
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(A†
L AL)fi fj

≡ (ηL)fi fj

ℛX =
σ(pp → H ) ⋅ ℬℛ(H → X)

σ(pp → HSM) ⋅ ℬℛ(HSM → X)

X = bb̄, τ−τ+, μ−μ+, WW*, ZZ*, γγ
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(A†
L AL)fi fj

≡ (ηL)fi fj

ℛX =
σ(pp → H ) ⋅ ℬℛ(H → X)

σ(pp → HSM) ⋅ ℬℛ(HSM → X)

X = bb̄, τ−τ+, μ−μ+, WW*, ZZ*, γγ

1.9 ≲ ηL ≲ 2.2

cos α ≈ ± 0.7



11

ℬℛ(t → Zc) ≲ 5 × 10−6
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ℬℛ(t → Zc) ≲ 5 × 10−6

Mixing parameter 
for Z and Z’



NEUTRINO MASSES AND MIXING 
With the fields of fermions introduced in the model, we may 
write the gauge invariant Yukawa couplings for the neutral 
sector:

ℒν = hij ̂νiLνjR + χijνiR (νjR)
c

+ ̂χij ̂νiL ( ̂νjL)
c

+ σijl̄iLΦ̃ ( ̂νjL)
c

+ ̂σij
¯ ̂liR

˜Φ̂ (νjR)
c

+ λijl̄iLΦ̃νjR + ̂λij
¯ ̂liR

˜Φ̂ ̂νjL + h.c.

When doublet scalar fields acquire VEV’s we get the neutrino 
mass terms

ℒν−mass = (ΨνL, Ψc
νL) (ML MD

MD MR) (ΨνR

Ψc
νR)
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Φ, Φ̂
Z2

Φ, Φ̂ hij = σij = ̂σij = 0

In this case the ordinary neutrinos can be written separately 
from for mirror neutrinos in the matrix as follows

ℒν−mass = (ΨνL, Ψc
νL) (ML MD

MD MR) (ΨνR

Ψc
νR)
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Φ, Φ̂
Z2

Φ, Φ̂ hij = σij = ̂σij = 0

In this case the ordinary neutrinos can be written separately 
from for mirror neutrinos in the matrix as follows

(νiL, νc
νR)

0 v

2
λij

v

2
λT

ij χij
(νc

iL
νjR)

( ̂νiL, ̂νc
νR)

̂χij
̂v

2
̂λij

̂v

2
̂λT
ij 0 (

̂νc
iL

̂νjR)

Ordinary

Mirror
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By assuming the natural hierarchy                      among the 
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DARK MATTER FROM MIRROR NEUTRINO 

( ̂νiL, ̂νc
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̂χij
̂v

2
̂λij

̂v

2
̂λT
ij 0 (

̂νc
iL

̂νjR) Mirror

We consider the lightest mirror neutrino as Dark Matter 
candidate. The mass matrix for mirror neutrinos was introduced 
as
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DARK MATTER FROM MIRROR NEUTRINO 

( ̂νiL, ̂νc
νR)

̂χij
̂v

2
̂λij

̂v

2
̂λT
ij 0 (

̂νc
iL

̂νjR) Mirror

We consider the lightest mirror neutrino as Dark Matter 
candidate. The mass matrix for mirror neutrinos was introduced 
as

Φ, Φ̂
Z2

Φ, Φ̂In the scenario 

the candidate is linked with particles through the mix of the H^
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ΩDMh2 = 0.12 ± 0.001
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• We explore DM in LRMM, assuming the lightest neutrino 
mirror as DM. 

• Masses for SM neutrinos are included by see-saw type I. 
• Some model parameters are constrained to explore a 

benchmark for DM relic density and SI cross section 
• Under the Plank collaboration reported value for no baryonic 

relic density, we find that the heavy neutral scalar like Higgs 
is viable as portal with mass ~1TeV for the reported limit for 
Z’ mass in the LRM. 

• Under lastest reported limit for SI cross section by XENON1T, 
we find that DM mass is viable for ~0.5TeV or less.



REFERENCES 

21

• P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update. 
• Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6, (2018).  
• M. A. Arroyo-Ureña, R. Gaitan, R. Martinez, J. H. Montes de Oca Yemha; Eur. Phys. J. C 

80 (2020) 8, 788.  
• Semenov. A., LanHEP, Nucl.Inst.&Meth. A393 (1997) p. 293 . 
• G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, B. Zaldivár, Comput.Phys.Commun.231 (2018) 

173. 
•  K.S. Babu and Rabindra N. Mohapatra., Phys. Rev. D 41 (1990), p. 1286. DOI: 10.1103/PhysRevD.

41.1286 
• V E. Ceron et al., Phys. Rev. D 57 (1998), pp. 1934–1939. DOI: 10.1103/PhysRevD.57.1934. arXiv: 

hep-ph/9705478. 
• U. Cotti et al., Phys. Rev. D 66 (2002), p. 015004. DOI: 10.1103/PhysRevD.66.015004. arXiv: hep-

ph/0205170. 
• Gaitan, et. al., Nucl.Part.Phys.Proc.  267-269  (2015)  101-107, Contribution to:  SILAFAE 

2014, 101-107. 
• Gaitan, et. al., Eur.Phys.J.C 72 (2012) 1859 , e-Print: 1201.3155 [hep-ph] 
• Gaitan, et. al., ,Int.J.Mod.Phys.A 22 (2007) 2935-2943 , e-Print: hep-ph/0605249 [hep-ph]. 


