Directly Probing the Higgs-top Coupling at High Scales

Roshan Mammen Abraham¹ With Dorival Gonçalves, Tao Han, Sze Ching Iris Leung and Han Qin [arXiv:2106.00018]

Higgs 2021, Stony Brook & BNL Oct. 20th, 2021

OKLAHOMA STATE UNIVERSITY

¹rmammen@okstate.edu

Roshan Mammen Abraham

Higgs-top Coupling at High Scales

Higgs 2021

SQA

Why

Roshan Mammen Abraham Higgs-top Coupling at High Scales

Higgs 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Motivation

Top Yukawa, y_t

- (y_t), at ∼ 1, is the strongest interaction of the Higgs boson in SM and hence most sensitive to BSM physics.
- It is crucial to the stability of SM vacuum during EWSB; has the dominant contribution to quantum corrections to Higgs mass etc.
- Precise measurement of y_t can be fundamental to pin down possible NP.
- HL-LHC projects measurement of y_t to an accuracy of $\delta y_t \leq \mathcal{O}(4)\%$. Probing at High Scales
 - Current measurements are at EW scale, $Q \sim v$.
 - BSM effects scale as $\left(\frac{Q}{\Lambda}\right)^{n>0}$; $\Lambda = NP$ scale.
 - NP effects can be enhanced by exploring top Yukawa at high scales.

э.

SQ (~

▲□▶ ▲圖▶ ▲필▶ ▲필▶

How

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Direct probe of top Yukawa at high scales

- Recently some proposals were made to study off-shell Higgs in the $gg \rightarrow h^* \rightarrow VV$ channel to probe Higgs physics at high scales (see talk by Han Qin)².
- In this work we directly probe Higgs-top coupling at high scales using on-shell Higgs production with high $p_{T,h}$.
- We look at the $pp \rightarrow t\bar{t}h$ channel, where at high scales we can simultaneously enhance NP effects and suppress backgrounds.
- The new physics sensitivity is parametrized in terms of the effective field theory framework, and a non-local Higgs-top coupling form-factor.

Gonçalves, Han, Leung, Qin (2020)

Roshan Mammen Abraham

Higgs-top Coupling at High Scales

1

JQ (~

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

²Gonçalves, Han, Mukhopadhyay (2018)

EFT framework

- EFT is usually parameterized as, $\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$
- Focusing on 2 fermion operators, we study the following operators.
 - $\mathcal{O}_{t\phi} = (H^{\dagger}H)(\bar{Q}t)\tilde{H} + \text{h.c.}$ which simply rescales the SM top Yukawa coupling, and
 - $\mathcal{O}_{tG} = ig_s(\bar{Q}\tau^{\mu\nu}T_At)\tilde{H}G^A_{\mu\nu} + \text{h.c.}$ the **chromo-dipole moment of top quark**. It modifies *gtt* vertex and introduces new vertices *ggtt*, *gtth*, *ggtth*.

P

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- The top-quark Yukawa coupling has a special role in the naturalness problem, displaying the dominant quantum corrections to the Higgs mass.
- Many well motivated scenarios consider the top quark and Higgs as composite particles arising from strongly interacting new dynamics at a scale Λ.³
- In such scenarios, top Yukawa has momentum-dependent form-factor rather than a point-like interaction.
- Motivated by nucleon form-factor we adopt the ansatz. $\Gamma(Q^2/\Lambda^2) = \frac{1}{(1+Q^2/\Lambda^2)^n}$, with n=2 the dipole form-factor (corresponding to exponential spatial distribution).

³Pomarol, Riva (2012); Panico, Wulzer (2015); Liu, Low, Wagner (2017) etc. Roshan Mammen Abraham Higgs-top Coupling at High Scales Higgs 2021

New Physics Effects

Ξ

5900

▲□▶ ▲□▶ ▲□▶ ▲□▶

• The K-factor decreases with $p_{T,h}$ and hence and cannot be captured by a global NLO K-factor.

Roshan Mammen Abraham Higgs-top Coupling at High Scales

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• We also see the enhancement arising from \mathcal{O}_{tG} operator is scale $(p_{T,h})$ dependent.

Roshan Mammen Abraham Higgs-top Coupling at High Scales

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• In the $t\bar{t}h$ process, $\mathcal{O}_{t\phi}$ only contributes to a shift of the top Yukawa resulting in a flat rescaling w.r.t the SM cross-section.

SQ P

$$\Gamma(Q^2/\Lambda^2) = \frac{1}{(1+Q^2/\Lambda^2)^n}, \ Q = p_{T,h}$$

• The form-factor scenario displays a depletion in cross-section at higher $p_{T,h}$, due to the dipole suppression (n=2).

Higgs-top Coupling at High Scales

Full Analysis

Ð,

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ > < □ > < □ > < □ > < □ >

Full Analysis - Using jet substructure

- Our signal is $pp \to t\bar{t}h$ with the $h \to b\bar{b}$ and top-quark pair decaying leptonically. Final state is 4 b-tagged jets and 2 opp. sign leptons.
- Leading backgrounds are $t\bar{t}b\bar{b}$ and $t\bar{t}Z(l^+l^-)$.
- Use of jet sub-structure techniques can effectively suppress backgrounds⁴.
 - We require at least 1 boosted fat jet (R=1.2) with $p_{TJ} > 200$ GeV, Higgs tagged with the BDRS algorithm.
 - Outside the fat jet we require 2 b-tagged jets (R=0.4) with $p_{Tj} > 30$ GeV; and Higgs candidate has a mass close to 125 GeV.

cuts	$t\bar{t}h$	$t \bar{t} b \bar{b}$	$t\bar{t}Z$
BDRS <i>h</i> -tag, $p_{T\ell} > 10$ GeV, $ \eta_{\ell} < 3$, $n_{\ell} = 2$	3.32	6.35	1.02
$p_{Tj} > 30 \text{ GeV}, \eta_j < 3, n_j \ge 2, n_b = 2$	0.72	1.97	0.22
$ m_h^{\rm BDRS} - 125 < 10 { m ~GeV}$	0.15	0.14	0.009

⁴Buckley, Gonçalves (2015)

Roshan Mammen Abraham

3

SQA

Full Analysis - EFT and form-factor

E

< □ ▶

E

Results - Individual

Higgs 2021

æ.

5900

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶

Results - Combined and form-factor

Linear order calculation is robust to quadratic effects.

Higgs 2021

Э

< □ ▶

E

Results - Combined and form-factor

Roshan Mammen Abraham

Higgs-top Coupling at High Scales

- The HL-LHC promises unprecedented precision in the top Yukawa measurement allowing one to constrain NP.
- Using the boosted Higgs regime (in the $t\bar{t}h$ channel) and jet sub structure techniques, we show how Higgs-top coupling can be *directly* probed at high scales.
- Sensitivity to new physics is presented within the EFT framework and also the Higgs-top form-factor.

1

SQ (V

- 4 同 ト 4 ヨ ト 4 ヨ ト

Backup Slides - More kinematic distributions, $p_{T,h}$

Backup Slides - More kinematic distributions, $p_{T,t}$

Ē

Backup Slides - More kinematic distributions, m_{tt}

Backup Slides - More kinematic distributions, m_{th}

