Searches for low- and high-mass resonances with the ATLAS detector

On behalf of the ATLAS collaboration

Liron Barak (Tel Aviv University)
Higgs 2021

Outline

- Beyond the Standard Model
 - 139 fb-1 results
 - High mass ZZ
 - High mass γγ
 - 80 fb⁻¹ results
 - Low mass γγ
 - 36 fb⁻¹ results
 - High mass WW
- Summary

Beyond the SM

- Standard Model (SM):
 One doublet of Higgs, only one neutral Higgs boson.
- SM needs to be extended:
 v mass, dark matter...
- Fermions (leptons and quarks) come in three generations, why only one Higgs doublet?
- In many extensions of the SM: Prediction of two complex Higgs doublets (2HDM).
- Five physical states: H⁺, H⁻, h⁰, H⁰, A⁰.

- Search for heavy resonances decaying into a pair of Z bosons in the llll and llvv final states using 139 fb-1 at 13 TeV.
- Many channels:
 - Productions: gluon-gluon fusion and vector-boson-fusion.
 - Decays: Illl and Ilvv.
 - Width assumptions: narrow-width approximation and large-width assumption (only for the ggF channel).
 - Spins: 0 (two-Higgs-doublet model) and 2 (Randall–Sundrum).
- Mass range: 200-2000 GeV.
- Discriminating variable:
 - Illl: m₄₁ (four-lepton invariant mass).
 - 11vv:

$$m_{\rm T} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

IIII

- Require two same-flavour, opposite-sign lepton pairs and have invariant masses cuts.
- For the NWA events are classified based on NN to separate the ggF and VBF production mechanisms.
- Signal modelling:
 - NWA: Crystal Ball and Gaussian function.
 - LWA and graviton: convolved also with the parton-level lineshape of m₄₁.

llvv

- Require a same-flavour, oppositesign lepton pair and have additional missing E_T related and angular cuts.
- Separate ggF from VBF based on jets related selections.
- Signal modeling:
 - M_T transverse mass template derived from simulations and fit to data.

- Background estimation:
 - Minor backgrounds simulated from MC.
 - Major backgrounds shape from MC and normalization from data.
 - Illl: dominant non resonant ZZ using functional form.
- LWA
 - H-h interference: reweighting the the particle-level lineshape of generated signal events.
 - H-B interference: generating Inclusive sample of signal+background+interference.

- Upper limits on XS*BR are set at the 95% CLs:
 - NWA (improvement of up to ~40% wrt previous results due to **improvements** in object performances and in the analysis):
 - 200–2.6 fb for ggF.
 - 87–1.9 fb for VBF.

m_H [GeV]

- Search for heavy resonances decaying into photon pairs using 139 fb⁻¹ at 13 TeV.
- Motivation:
 - Spin 0 extended Higgs sector.
 - Spin 2 warped extra-dimension model.
- Require at least two photons with $E_T > 22$ GeV and additional $E_T/m_{\gamma\gamma} > 0.3$

(0.25) for leading (subleading) γ .

- The signal is modeled using
 - Double Sided Crystal Ball
 - Convolved with the truth line shape.
 - Breit-Wigner.

Phys. Lett. B 822 (2021) 136651

- Background estimation:
 - Irreducible (γγ) from MC.
 - Reducible (yj,jy,jj) from data driven methods.
 - Mixed according to data-driven purities.
 - Fluctuations suppressed using the functional decomposition method.
 Up to 25% gain on the limit wrt using the default MC.
- Background modeling:
 - Fit range: 160-3000 GeV (spin dependent).
 - Functional form:

$$f(x; b, a_0, a_1) = N(1 - x^{1/3})^b x^{a_0 + a_1 \log(x)}$$

• Uncertainty obtained using the spurious signal method.

ATLAS

- Upper limits on the fiducial XS*BR are set at the 95% CLs:
 - Spin 0: 12.5–0.03 fb.
 - Spin 2: 3.2–0.04 fb.
- Highest local (global) is 3.29σ (1.36) at m = 684 GeV.

 \sqrt{s} = 13 TeV, 139 fb⁻¹

Spin-0

$H \rightarrow \gamma \gamma$

- Search for low-mass resonance decaying into photon pairs using 80 fb⁻¹ at 13 TeV.
- Mass range: 65 110 GeV.
- Additional features:
 - Another background: Drell-Yan originates from $Z/\gamma^* \rightarrow e^+e^-$ with electrons faking photons.
 - Shape and normalization constrained using a data-driven measurement of $e \rightarrow \gamma$ events in $Z \rightarrow ee$ decays.
 - Categories based on the photon reconstruction: both unconverted (UU), one converted and one unconverted (CU) or both converted (CC).
- Background estimation:
 - Both the non-resonant continuum and the resonant DY are estimated separately in each category.
 - The continuum is fitted on data, with the normalization and function parameters free, while for the DY both shape and normalization are fitted but constrained by control regions.

. B [fb]

- Upper limits on the fiducial XS*BR are set at the 95% CLs:
 - 30 101 fb.

Higgs 2021

- Search for heavy resonances decaying into WW in the evµv final state using 36.1 fb⁻¹ at 13 TeV.
- Many channels:
 - Productions: gluon-gluon fusion and vector-boson-fusion.
 - Width assumptions: narrow-width approximation and large-width assumption.
 - Spins: 0 (2HDM, GM), 1 (HVT) and 2 (Randall–Sundrum, ELM).
- Mass range: 200-5000 GeV.
- Discriminating variable:

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left|\mathbf{p}_{\mathrm{T}}^{\ell\ell} + \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}},$$

Where
$$E_{\mathrm{T}}^{\ell\ell} = \sqrt{|\mathbf{p}_{\mathrm{T}}^{\ell\ell}|^2 + m_{\ell\ell}^2}$$

MIOUCI	Resonance spin	Froduction mode		
		ggF	qqA	VBF
NWA	Spin-0	X		X
2HDM		X		X
LWA		X		X
GM				X
HVT	Spin-1		X	X
Bulk RS	Spin-2	X		
ELM				X

Resonance spin | Production mode

L. Barak

13

$H \rightarrow WW$

Eur. Phys. J. C 78 (2018) 24

- Dominant BGs: non resonant VV and V+jets.
- Upper limits on XS*BR are set at the 95% CLs:
 - NWA:
 - 6.4–0.008 pb for ggF.
 - 1.3–0.006 pb for VBF.

Summary

- ATLAS is searching for a new physics in various production and decay modes, under different spin assumptions.
- Unfortunately, no significant deviation from the SM prediction has been observed.
- Many more exciting results to come using the full Run 2 dataset.

THANK YOU FOR YOUR ATTENTION

The LHC

- Run 2 is over with more than 150 fb⁻¹ of data delivered during 2015-2018.
 - Almost 140 fb⁻¹ are good for physics.

• Search for heavy resonances decaying into WW in the evµv final state using 36.1 fb⁻¹ at 13 TeV.

$\mathrm{SR}_{\mathrm{ggF}}$	$\mathrm{SR}_{\mathrm{VBF1J}}$	SR _{VBF2J}				
Common selections						
$N_{b\text{-tag}} = 0$						
$ \Delta \eta_{\ell\ell} < 1.8$						
$m_{\ell\ell} > 55 \mathrm{GeV}$						
$p_{_{\mathrm{T}}}^{\ell,\mathrm{lead}} > 45\mathrm{GeV}$						
$p_{\mathrm{T}}^{\ell,\mathrm{lead}} > 45\mathrm{GeV}$ $p_{\mathrm{T}}^{\ell,\mathrm{sublead}} > 30\mathrm{GeV}$						
veto if $p_{\rm T}^{\ell, \text{other}} > 15 \text{GeV}$						
$\max(m_{\mathrm{T}}^{W}) > 50 \mathrm{GeV}$						
ggF phase space	VBF1J phase space	VBF2J phase space				
Inclusive in N_{jet} but excluding	$N_{\rm jet} = 1$ and	$N_{\rm jet} \ge 2$ and				
VBF1J and VBF2J phase space	$ \eta_j > 2.4, \min(\Delta \eta_{j\ell}) > 1.75$	$m_{jj} > 500 \text{GeV}, \Delta y_{jj} > 4$				

L. Barak

SUMMARY SLIDES

- Search for heavy resonances decaying into a pair of Z bosons in the llll and llvv final states using 139 fb-1 at 13 TeV.
- Many channels:
 - Productions: gluon-gluon fusion and vector-boson-fusion.
 - Decays: Illl and Ilvv.
 - Width assumptions: narrow-width approximation and large-width assumption (only for the ggF channel).
 - Spins: 0 (two-Higgs-doublet model) and 2 (Randall–Sundrum).
- Mass range: 200-2000 GeV.
- Discriminating variable:
 - Illl: m₄₁ (four-lepton invariant mass).
 - 11vv:

$$m_{\rm T} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

Higgs 2021

Eur. Phys. J. C 81 (2021) 332

- Upper limits on XS*BR are set at the 95% CLs:
 - NWA (improvement of up to ~40% wrt previous results due to **improvements** in object performances and in the analysis):
 - 200–2.6 fb for ggF.
 - 87–1.9 fb for VBF.

m_H [GeV]

New

- Search for heavy resonances decaying into photon pairs using 139 fb⁻¹ at 13 TeV.
- Upper limits on the fiducial XS*BR are set at the 95% CLs:
 - Spin 0: 12.5–0.03 fb.
 - Spin 2: 3.2–0.04 fb.
- Highest local (global) is 3.29σ (1.36) at m = 684 GeV.

$H \rightarrow \gamma \gamma$

• Search for low-mass resonance decaying into photon pairs using 80 fb⁻¹ at 13 TeV.

• Upper limits on the fiducial XS*BR are set at the 95% CLs:

• 30 - 101 fb.

$H \rightarrow WW$

Eur. Phys. J. C 78 (2018) 24

- Search for heavy resonances decaying into WW in the evµv final state using 36.1 fb-1 at 13 TeV.
- Dominant BGs: non resonant VV and V+jets.
- Upper limits on XS*BR are set at the 95% CLs:
 - NWA:
 - 6.4–0.008 pb for ggF.
 - 1.3–0.006 pb for VBF.

Model	Resonance spin	Production mode 6		
		ggF	qqA	VBF
NWA	Spin-0	X		X
2HDM		X		X
LWA		X		x
GM				x
HVT	Spin-1		X	X
Bulk RS	Spin-2	X		
ELM				x

 $\times B(X \rightarrow WW)$ [pb]

