

Combined SMEFT interpretation of Higgs, diboson and top quark data from the LHC

Higgs 2021, October 19th, 2021 Giacomo Magni *Nikhef Theory Group & VU Amsterdam*

Motivation

Towards a SMEFT global fit

Present results based on:

SMEFiT Collaboration: Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC https://arxiv.org/abs/2105.00006

Goal: produce "global" SMEFT fit including Higgs, Top, VV data

What do we fit:

- 317 experimental datapoints from LHC (Run I, II and LEP)
- Dim 6 EFT expanded including Linear and Quadratic contribution using SMEFT@NLO
- 36 independent dof (14 related with EWPO) coming from the Warsaw basis

Motivation: a global SMEFT fit will tell us:

- If there is any deviation from the SM prediction in the LHC (i.e: where to look in the future)
- If the SMEFT is a correct interpretation of such deviations or we need a more complex EFT

Fitting Methodology The SMEFiT framework

- Two independent fitting methods: McFit (frequentist approach) and Nested Sampling (Bayesian approach) to cross-check each other
- Inclusion of the experimental correlations and pdf uncertainties
- Fitting also quadratic EFT contribution

Full **posterior probabilities** for the EFT coefficients

Linear vs Quadratic EFT fits

68% (95%) CL: Linear vs Quadratic

• All the op. are compatible with SM solution (95 % cl) except for c_{tG} (quadratic)

 Generally, quadratics give more stringent bounds bringing new genuine information

Linear vs Quadratic EFT fits

Quadratic EFT breaks flat directions (see 4 Heavy Fermion)

 Posterior distribution are not more always Gaussian and double minima can appear

Summary and Outlook

SMEFIT is a framework able to produce a comprehensive analysis of HEP data in the context of SMEFT

Future plans:

- ✓ Keep expanding included datasets:
 - ✓ new LHC observables (DY, including flavour)
 - ✓ Also non-LHC processes (low-energy, neutrinos, EDMs)
- ✓ Keep stress-testing the fit methodology as it scales to a fit involving hundreds of coefficients.
- Study of the optimal observables to maximise the EFT sensitivity
- ✓ Benchmark comparisons with other groups
- Not discussed here:
 - UV-motivated theory constraints and UV matching
 - Interplay with PDF fits (here we used a PDF set without top data to avoid double counting)
 - Treatment of theory uncertainties

Theory settings **SMEFT**

Bottom-up approach: add higher dimension operator to the SM Lagrangian:

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i=1}^{N_6} \frac{c_i}{\Lambda_i^2} O_i^{(6)} + \sum_{j=1}^{N_8} \frac{c_j}{\Lambda_j^2} O_j^{(8)}$$

dim 6 EFT from Warsaw Basis

dim 8 EFT, not considered here

Observables gets modified as:

$$\sigma_{SMEFT} = \sigma_{SM} \times \left[1 + \sum_{i=1}^{N_6} \frac{c_i}{\Lambda^2} \sigma_i^{(SM,6)} + \sum_{i,j=1}^{N_6} \frac{c_i c_j}{\Lambda^4} \sigma_{i,j}^{(6,6)}\right]$$

Theory settings

Operator Basis and Flavour assumptions

Class	$N_{ m dof}$	Independent DOFs	DoF in EWPOs
four-quark (two-light-two-heavy)	14	$c_{Qq}^{1,8}, c_{Qq}^{1,1}, c_{Qq}^{3,8},$ $c_{Qq}^{3,1}, c_{tq}^{8}, c_{tq}^{1},$ $c_{tu}^{8}, c_{tu}^{1}, c_{Qu}^{8},$ $c_{Qu}^{1}, c_{td}^{8}, c_{td}^{1},$ c_{Qd}^{8}, c_{Qd}^{1}	
four-quark (four-heavy)	5	$c_{QQ}^{1}, c_{QQ}^{8}, c_{Qt}^{1},$ c_{Qt}^{8}, c_{tt}^{1}	
four-lepton	1		$c_{\ell\ell}$
two-fermion (+ bosonic fields)	23	$c_{t\varphi}, c_{tG}, c_{b\varphi},$ $c_{c\varphi}, c_{\tau\varphi}, c_{tW},$ $c_{tZ}, c_{\varphi Q}^{(3)}, c_{\varphi Q}^{(-)},$ $c_{\varphi t}$	$c_{\varphi\ell_{1}}^{(1)}, c_{\varphi\ell_{1}}^{(3)}, c_{\varphi\ell_{2}}^{(1)}$ $c_{\varphi\ell_{2}}^{(3)}, c_{\varphi\ell_{3}}^{(1)}, c_{\varphi\ell_{3}}^{(3)},$ $c_{\varphi e}, c_{\varphi \mu}, c_{\varphi \tau},$ $c_{\varphi q}^{(3)}, c_{\varphi q}^{(-)},$ $c_{\varphi u}, c_{\varphi d}$
Purely bosonic	7	$c_{\varphi G}, c_{\varphi B}, c_{\varphi W},$ $c_{\varphi d}, c_{WWW}$	$c_{\varphi WB},c_{\varphi D}$
Total	50 (36 independent)	34	16 (2 independent

- Dim-6 Warsaw operators modifying Higgs, dibosons and top quark measurements: 36 (14) independent (dependent)
- Flavour assumption is MFV, with in quark sector with special treatment of role for top and bottom quark
- **LEP EWPOs** imposed via restrictions in parameter space:

$$\begin{pmatrix} c_{\varphi\ell_{i}}^{(3)} \\ c_{\varphi\ell_{i}}^{(1)} \\ c_{\varphi\rho/\mu/\tau}^{(-)} \\ c_{\varphi q}^{(-)} \\ c_{\varphi q}^{(3)} \\ c_{\varphi q} \\ c_{\varphi u} \\ c_{\varphi d} \\ c_{\ell\ell} \end{pmatrix} = \begin{pmatrix} -\frac{1}{t_{W}} & -\frac{1}{4t_{W}^{2}} \\ 0 & -\frac{1}{4} \\ 0 & -\frac{1}{2} \\ \frac{1}{t_{W}} & \frac{1}{4s_{W}^{2}} - \frac{1}{6} \\ -\frac{1}{t_{W}} & -\frac{1}{4t_{W}^{2}} \\ 0 & \frac{1}{3} \\ 0 & -\frac{1}{6} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_{\varphi WB} \\ c_{\varphi D} \end{pmatrix}.$$

Experimental Data

317 experimental datapoints, with

fiducial and differential cross sections,

Top charge Asymmetries, STXS

from:

- LHC Run I
- LHC Run II
- LEP-2 (Diboson production)

Chi2 values after fitting: good reconstruction of the experimental data

Category	Processes	$n_{ m dat}$
Top quark production	$t\bar{t}$ (inclusive)	94
	$t ar t Z, \ t ar t W$	14
	single top (inclusive)	27
	tZ,tW	9
	$t\bar{t}t\bar{t}$, $t\bar{t}b\bar{b}$	6
	Total	150
Higgs production and decay	Run I signal strengths	22
	Run II signal strengths	40
	Run II, differential distributions & STXS	35
	Total	97
Diboson production	LEP-2	40
	LHC	30
	Total	70
Baseline dataset	Total	317

Dataset	$n_{ m dat}$	$\chi^2_{ m SM}$	$\chi^2_{ m EFT} \ {\cal O}(\Lambda^{-2})$	$\chi^2_{ m EFT} \ {\cal O}(\Lambda^{-4})$
Total	317	1.05	0.98	1.04

Fitting Methodology

Fisher Information and EFT sensitivity

- Fisher information eigenvalues quantifies how much each operator contributes to a process (experimental dataset)
- At linear level can be computed before fitting
- Can be evaluated with and without NLO EFT corrections

We observe:

- 4 Fermion operators are constrained mainly with top data
- 2 Fermion 2 Boson and purely bosonic by Higgs data

Linear

Quadratic

Fitting Methodology The SMEFiT framework

Documentation: https://lhcfitnikhef.github.io/SMEFT/

Define the figure of merit to minimize:

$$\chi^2(c_k) = \frac{1}{N_{data}} \sum (O_{exp,i} - O_{th,i})(cov^{-1})_{ij} O_{exp,j} - O_{th,j})$$
 Covariance

Two complementary and equivalent fitting strategies:

Bayesian reweighting (Nested Sampling):

 $p(c_k | data) = \frac{1}{Z} \mathcal{L}(data | c_k) \Pi(c_k)$

Multi Gaussian likelihood

Flat prior

including experimental and pdf uncertainties

Monte Carlo replicas: build many artificial replicas and determine the coefficients minimizing a cost function, replica by replica. $1 \quad \stackrel{N_{\text{dat}}}{\smile}$

$$E(\{c_l^{(k)}\}) \equiv \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(\mathcal{O}_i^{(\text{th})} \left(\{c_n^{(k)}\} \right) - \mathcal{O}_i^{(\text{art})(k)} \right) (\text{cov}^{-1})_{ij} \left(\mathcal{O}_j^{(\text{th})} \left(\{c_n^{(k)}\} \right) - \mathcal{O}_j^{(\text{art})(k)} \right)$$

Combined fit Linear vs Quadratic EFT

Posterior distributions: Linear vs Quadratic

68% (95%) CL: Linear vs Quadratic

- All the op. are compatible with SM solution (95 % cl) except for c_{tG}
- Quadratic EFT **breaks flat directions** (see 4 Heavy Fermion)
- Generally, quadratics give more stringent bounds bringing **new genuine information**
- Posterior distribution are not more always Gaussian and double minima can appear

Combined fit Effect of NLO corrections

- NLO corrections break degeneracy on 4 Fermions op
- Effects are more evident for linear fit
- Nontrivial shifts both for central values and confidence levels
- NLO EFT corrections are needed: fits are more stable

Posterior distributions: Linear fit

68% (95%) CL: Quadratic fit

Comparison with similar studies

Linear EFT

FitMaker: J. Ellis et al. (see K. Mimasu talk)

95 % Individual CL: reasonable agreement, but not a fine tuned benchmark comparison

Comparison with similar studies Quadratic EFT

- SFitter: I.Brivio et al.
- ATLAS CONF note: <u>ATAS-CONF-2020-053</u> (see , C. D. Burgard talk)

68% (95 %) CL: reasonable agreement, but not fine tuned benchmark comparison!!

Summary and Outlook

SMEFIT is a framework able to produce a comprehensive analysis of HEP data in the context of SMEFT

Future plans:

- ✓ Keep expanding included datasets:
 - ✓ new LHC observables (DY, including flavour)
 - ✓ Also non-LHC processes (low-energy, neutrinos, EDMs)
- ✓ Keep stress-testing the fit methodology as it scales to a fit involving hundreds of coefficients.
- ✓ Study of the **optimal observables** to maximise the EFT sensitivity (see J. Ter Hoeve talk)
- ✓ **Benchmark comparisons** with other groups (see K. Mimasu, C. D. Burgard and E. Geoffray talks)
- Not discussed here:
 - UV-motivated theory constraints and UV matching
 - Interplay with PDF fits (here we used a PDF set without top data to avoid double counting)
 - Treatment of theory uncertainties

Thank you for the attention!

Fitting Methodology Principal Component Analysis

- PCA is useful to identify and spot flat and "data driven" directions.
- Gives the best linear combination of coefficient to fit at linear level

We observe:

 4 Heavy Fermions operators are basically unconstrained at linear level

Combined fitDataset Variations

- EWPO constrain are fixed in these fits.
- Global fit is stable upon dataset variations
- Top data improve bounds on bosonic operators,
 coupled with 3rd generation fermions.
- Dibosons data mainly relevant for c_{WWW}

