Charm-jet tagging at LHCb

Tom Boettcher

on behalf of the LHCb Collaboration

Higgs October 20, 2021

Motivation: Forward Z + c production (arXiv:2109.08084)

- Ideal probe of valence-like intrinsic charm (PRD 93, no.7, 074008 (2016))
- Observe an enhancement at high y(Z), consistent with IC
- b/c-jet tagging also used to search for $H \rightarrow c\bar{c}/b\bar{b}$: $y^b < 7y^b_{\rm SM}$ and $y^c < 80y^c_{\rm SM}$ (LHCb-CONF-2016-006)

The LHCb detector (Int. J. Mod. Phys. A 30, 1530022 (2015))

Optimized for heavy flavor physics \rightarrow ideal for identifying heavy flavor jets

Heavy flavor jet tagging in Run 1 (JINST 10 P06013)

- Jets are identified using displaced secondary vertices and two BDTs: $BDT_{bc|udsg}$ and $BDT_{b|c}$
- \blacksquare b (c) jets tagged with 65% (25%) efficiency with 0.3% mistag probability
- Not optimized for Run 2 + Can improve *c*-tagging performance with a dedicated algorithm.

Charm jet tagging with Displaced Vertices in Run 2

■ "Tag" jets with a 2, 3, or 4-track displaced vertex (DV)

• Determine the composition of the tagged jets using a 2D fit to $m_{\rm cor}$ and $N_{\rm trk}$

Tagging charm jets in Z + c

• Efficiency is measured using a tag-and-probe method with a dijet calibration sample

- Total c-jet yield determined using fully reconstructed $D^0 \to K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$
- Efficiency is about 24% for $20 < p_{\rm T}(j) < 100 \,{\rm GeV}$

Outlook

LHCb is uniquely suited for studying charm jets

- Run 3: factor of ~ 3 increase in sensitivity to intrinsic charm in Z + c production
- $V + H(\rightarrow c\bar{c})$ with 300 fb⁻¹ at LHCb potentially sensitive to y_c as small as $\sim 2y_c^{\text{SM}}$ (see Davide's talk)

Thank You!

Tag-and-Probe

W + (c, b) (PRD 92 (2015) 052001)

 Wc, Wb, W^-j, W^+j

$\sim 2\sigma$ tension in $\mathcal{A}(Wc)$ could point to an asymmetry between s and \bar{s} PDFs

-5

$t\bar{t}$ at 13 TeV (JHEP 08 (2018) 174)

- \blacksquare Measured in the $\mu + e + b$ final state
- \blacksquare Probes the gluon PDF at high-x

- Syst. and stat. uncertainties are similar
- Syst. uncertainties dominated by b-tagging efficiency

$t\bar{t}$, $W + c\bar{c}$, and $W + b\bar{b}$ (Phys. Lett. B767 (2017) 110)

$c\bar{c}$ and $b\bar{b}$ at 13 TeV (JHEP 02 (2021) 023)

• Yields determined using template fits to jet tagging BDT outputs:

$$t_0 = BDT_{bc|udsg}(j_0) + BDT_{bc|udsg}(j_1)$$

$$t_1 = BDT_{b|c}(j_0) + BDT_{b|c}(j_1)$$

• Theoretical uncertainties dominated by scale uncertainties