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Future Circular Collider Study 
launched in 2014

international FCC 

collaboration (CERN as 

host lab) to study: 

• pp-collider (FCC-hh)                      

→ defining infrastructure 

requirements 

• 80-100 km infrastructure 

in Geneva area

• e+e- collider (FCC-ee) as 

a possible first step

• p-e (FCC-he) option, HE-

LHC …

~16 T  100 TeV pp in 100 km



CepC/SppC study (CAS-IHEP), 100 km collider,

one of the proposed sites

Qinhuangdao (秦皇岛）

easy access

300 km east 

from Beijing

3 h by car

1 h by train 

Yifang Wang

CepC, SppC

“Chinese Toscana”

100 km 
50 km 
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FCC-ee physics requirements

❑ beam energy range from 35 GeV to ≈200 GeV

❑ highest possible luminosities at all working points

❑ physics programs / energies:

Z (45.5 GeV) Z pole, ‘TeraZ’ and high precision MZ & GZ

W (80 GeV) W pair production threshold, high precision MW

H (120 GeV) ZH production (maximum rate of H’s) 

t (182.5 GeV): 𝑡 ҧ𝑡 threshold, H studies

more (aQED etc.)

❑ possibly H (63 GeV) direct s-channel production with 

monochromatization

❑ some polarization up to ≥80 GeV for beam energy calibration

❑

A. Blondel,     

J. Ellis ,         

C. Grojean,         

P. Janot,        

et al.
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circumference 27 km

in operation from 1989 to 2000

maximum c.m. energy 209 GeV

maximum synchrotron radiation power 23 MW

LEP/LEP2: highest energy so far  
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KEKB & PEP-II: high current, high L

KEKB

PEP-II

KEKB design

PEP-II design

source: KEK

Ie+=3.2 A, Ie-=2.1 A

Ie+=1.6 A, Ie-=1.2 A

PSR ~ 5 MW 

C = 3 km

PSR ~ 8 MW 

C = 2.2 km
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Before Top-Up

After Top-Up

J. Seeman

average luminosity ≈ peak luminosity

J. Seeman

similar results from KEKB

KEKB & PEP-II: top-up injection
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DAFNE: “crab waist” collisions

DAFNE Peak Luminosity

CRAB-WAIST 
Collision 
Scheme

D
es

ig
n

 G
o

al

M. Zobov
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crab-waist crossing for flat beams

regular crossing

crab waist  -

vertical waist position 
in s varies with horizontal
position x
• allows for small by* and for small ex,y

• and avoids betatron resonances (→higher  beam-beam tune shift)

P. Raimondi,

et al. 



FCC consistent machine layouts

FCC-hh FCC-ee 1, FCC-ee 2, 
FCC-ee booster (FCC-hh footprint)

Closed optics solutions for full ring for both machines available

9 m off-centred IPs 

wrt. hh IPs



similar solutions for FCC-ee and CEPC

FCC

• Double ring colliders with full-energy top-up booster ring, 
• CEPC evolved from initial 54 km - single-ring design, practically to the FCC-ee 100 km design.
• 2 IPs, 2 RF straights, tapering of arc magnet strengths to match local energy 
• Asymmetric IR layout to limit SR of incoming beams towards detectors and generate large 

crossing angle
• Common use of RF systems for both beams at highest energy working point (ttbar/ZH for FCC-

ee/CEPC)



A. Blondel, H. Burkhardt, M. Koratzinos, K. Oide 

SR fans in the interaction region (IR)
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curved orbit of e- in magnetic field

L. Rivkin
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final focus chromaticity

spot size increase due to 

(uncorrected) chromaticity,
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ttbar 182.5 GeV

4 sextupoles (a – d) for local vertical chromaticity correction and crab 

waist, optimized for each working point. 

Common arc lattice for all energies, 60 deg for Z, W and 90 deg for ZH, tt for 

maximum stability and luminosity

yellow boxes: 

dipole magnets

asymmetric IR 

optics to 

suppress 

synchrotron 

radiation toward 

the IP, Ecritical

<100 keV from 

450 m from IP (e)

FCC-ee asymmetric crab waist IR optics

K. Oide
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by
* = 0.8 mm achieved in both rings in 

summer 2020 – using the FCC-ee-style 
“virtual” crab-waist collision scheme

Design: double ring e+e- collider as B-factory at 7(e-) & 4(e+) GeV; design luminosity ~8 x 1035 cm-2s-1; by
*~ 0.3 mm; 

nano-beam – large crossing angle collision scheme (crab waist w/o sextupoles); beam lifetime ~5 minutes; top-up 
injection; ce+ rate up to ~ 2.5 1012 /s ; under commissioning

Y. Funakoshi, Y. Ohnishi, K. Oide

SuperKEKB is demonstrating 

FCC-ee key concepts 

M. Tobiyama, K. Oide

SuperKEKB – pushing luminosity and b*



synchrotron radiation power 

energy loss per turn
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arc synchrotron radiation (SR) 1

→ RF power

→ RF voltage

→ shielding

∝ Τ𝐸4 𝑚4 ∝ 𝛾4

∝ Τ𝐸4 𝑚4 ∝ 𝛾4

numerical values
for electrons

electrons: 𝑷𝑺𝑹 = 23 MW for 
LEP, 100 MW for FCC-ee
protons: 𝑃𝑆𝑅 = 0.01 MW for 
LHC, 5 MW for FCC-hh

electrons: Ec, ~ 1 MeV 
for LEP and FCC-ee;
protons: Ec, ~40 eV LHC,
~4 keV FCC-hh

𝑈0 =
𝑒2

3𝜖0

𝛾4

𝜚



arc synchrotron radiation 2

𝐶𝑞 =
55

32 3

ℏ𝑐

𝑚𝑐2
≈ ቊ

4 × 10−13m for electrons
2 × 10−16m for protons

equilibrium emittance due to balance of radiation damping 
and quantum excitation 

𝐹 ≈ 3 for standard arc optics (90deg FODO cell)

𝑙𝑏: length of half cell

radiation damping of transverse and longitudinal motion
→beam shrinkage

electrons: 𝜏||~ 3 ms for LEP, 20 ms FCC-ee at 240 GeV cm

protons: 𝜏||~13 h for LHC, 0.5 h FCC-hh

increase of emittance with energy is compensated by large radius () and short cell length (lb)

→ cell length

∝ Τ𝜌2 𝛾3



transverse emittances

Y. Papaphilippou



horizontal emittance (at =1)

FCC-ee outperforming most of the
“ultimate storage ring” light sources

R. Bartolini, S. Casalbuoni



vertical emittance & chromaticity

T. Charles

FCC-ee 𝑡 ҧ𝑡 emittance and chromaticity y similar to SIRIUS light source
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FCC-ee luminosity per IP



can we understand the luminosity scaling ?
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J. Wenninger

ρ: bending radius

𝛽𝑦
∗ ∝ 𝐸
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x4

>x4.5

x1/25-1/50
<x2

>x2

luminosity from LEP-2 to FCC-ee

much bigger factors on the Z pole: 105× LEP-1 luminosity !



CDR baseline parameters

parameter FCC-ee LEP2

energy/beam [GeV] 45.6 80 120 182.5 105

bunches/beam 16640 2000 328 48 4

beam current [mA] 1390 147 29 5.4 3

luminosity/IP x 1034 cm-2s-1 230 28 8.5 1.6 0.0012

energy loss/turn [GeV] 0.036 0.34 1.72 9.2 3.34

synchrotron power [MW] 100 22

RF voltage [GV] 0.1 0.75 2.0 4.0+6.9 3.5

rms bunch length (SR,+BS) [mm] 3.5, 12 3.0,6.0 3.2, 5.3 2.0, 2.5 12, 12

rms emittance ex,y [nm, pm] 0.27, 1 0.84, 1.7 0.63, 1.3 1.5, 2.9 22, 250

longit. damping time [turns] 1273 236 70 20 31

crossing angle [mrad] 30 0

beam lifetime [min] 68 59 12 12 434

FCC-ee & CEPC: 2 separate rings



beamstrahlung – a new limit at 182 GeV 
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❑ hard photon emission at the IPs, ‘Beamstrahlung’, can become 
lifetime / performance limit for large bunch populations (N), small 
hor. beam size (x) & short bunches (s)  

 : mean bending radius at 
the IP (in the field of the 

opposing bunch)

❑ for acceptable lifetime,  must be sufficiently large

o flat beams (large x) !

o bunch length !

o large momentum acceptance: aiming for ≥2% at 182.5 GeV

- LEP: <1% acceptance, SuperKEKB ~ 1.5%

 : ring energy acceptance

e

e

lifetime expression by V. Telnov, modified version by A. Bogomyagkov et al

J. Wenninger, et al



coherent x-y beam-beam instability

Lifetrac code BBSS code

horizontal bunch shape 
at some turns

K. Ohmi

D. Shatilov

Coherent instability: ex

dependence on x and s.
Quasi-strong-strong simulations. 
URF = 250 MV (red) and 100 MV 
(green, blue).

Mitigation (Shatilov):
▪ Decrease bx 

*

(and thus x)
▪ Increase 

momentum 
compaction

▪ Reduce RF 
voltage.

▪ Neat choice of x.

 limit, strong coherent instability



beside the collider ring(s), a booster of the same size 
(same tunnel) must provide beams for top-up injection 
to sustain the extremely high luminosity 

o same size of RF system, but low power (~ MW)

o top up frequency ≈0.1 Hz

o booster injection energy ≈5-20 GeV

o bypass around the experiments

A. Blondel

FCC-ee top-up injection
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dynamic aperture
K. Oide
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dynamic aperture limited by synchrotron radiation in 

quadrupoles !
Horizontal plane: 

Radiative Beta-

Synchrotron Coupling 

(RBSC) [Jowett, 1994] –

additional energy loss due 

to radiation in quadrupoles 

shifts synchronous point 

and develops large 

synchrotron oscillations. 

→ resulting horizontal tune 

shift onto the integer 

resonance

Vertical plane: 

Radiation from 

quadrupoles modulates 

the particle energy

at twice the betatron

frequency → parametric 

resonance, independent 

of tune

dynamic aperture with

and without deterministic 

synchrotron radiation in 

quadrupoles (w/o quantum 

fluctuations)

A. Bogomyagkov et al., 

PRAB  22, 021001 (2019) ; 
J. Jowett, Proc. 4th Workshop 
on LEP Performance,

CERN SL/94-06 (DI) (1994)
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Single-Bunch Microwave Instability  

Nominal 
bunch 

intensity 

PyHEADTAIL

Transverse Multibunch Instability 

shortest rise time ~7 turns

resistive wall impedance important for 100 km ring

M. Migliorati, E. Belli, et al.,

PRAB 21, 041001 (2018)
→ novel ultrathin NEG coating
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luminosity limited by injector

𝑒𝑁±𝑛𝑏𝑓rev = 𝜖𝑒±𝐼𝑒±,inj𝜏±

in equilibrium

luminosity equation for SuperKEKB

inj. efficiency

injected beam current

specific luminosity (L per two currents) 

beam lifetime
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optimising the pre-injector complex

Alexej Grudiev, Paolo Craievich, Katsunobu Oide, Iryna Chaikovska, Catia Milardi, Angeles Faus-
Golfe, Hans Braun, Michael Benedikt, Salim Ogur, Ozgur Itasken, Yannis Papaphilippou, et al.

plasma linac?

25-162.5 GeV plasma e+/e- linac
could replace PBR & FEB !

CEPC, Z. Y. Xu et al., 

PRAB 23, 091301 (2020)

final energy 10 or 20 GeV
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LEP2

LHC
HL-LHC

Multi-years cycles for LHC

Cycles: 9m+3m Cycles: 3 or 4 x (10m+2m) + 1.5yr

V. Mertens

energy consumption – example CERN
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0

100

200

300

400

Z WW ZH ttbar

electrical power budget [MW]

collider cryo booster rf & cryo collider rf

magnets cooling & ventilation general services

two experiments two data centres injector complex

FCC-ee electrical power requirements
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RF as main power consumer 

continually supplying circulating beam with 

PSR=100 MW power (SR losses) requires 

wall-plug power Pwall=PSR/ , note 𝐼𝑏 ∝ 𝑃𝑆𝑅

with =conversion efficiency wall-plug → beam

FCC strategy:

• RF system optimized for each energy

• higher-gradient high-Q SC cavities (negligible wall 

losses, low cryo power)  

• highly efficient RF power sources 
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?

0 20 40 60 80 100 120
109

1010

1011

Q
0

Eacc (MV/m)

Enabling future efficient High Energy 

Machines

Anna Grassellino - ICFA 2017

bulk Nb, 1.3 GHz, 2K

SRF cavities over 30 years | high Q0 & Eacc → less cryopower

A. Grasselino, ICFA Seminar, Ottawa 2017

similar progress for Nb/Cu cavities
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after 80 years breakthrough in klystron technology

New bunching technologies.

Bunch saturation.

I. Syratchev
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twin-dipole magnet design with 2× power saving 

16 MW (at 175 GeV), with Al busbars

prototype prototype

A. Milanese, Efficient twin aperture magnets for the future circular 

e+/e- collider, Phys. Rev. Accel. Beams 19, 112401 (2016) 

twin F/D arc quadrupole design with 2×

power saving; 25 MW (at 175 GeV), with 
Cu conductor

2900 units, 10 T/m, 3.1 m2900 units, 0.057 T, ~22 m

low-cost, energy-efficient arc magnets
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M. Benedikt, A. Blondel, P. Janot, et al., Nat. Phys. 16, 402-407 (2020), and 

European Strategy for Particle Physics Preparatory Group, Physics Briefing Book (CERN, 2019)

FCC-ee: efficient Higgs/electroweak factory

luminosity L per supplied 

electrical wall-plug power 

PWP is shown as a function 

of centre-of-mass energy 

for several proposed future 

lepton colliders

€200 electricity cost

per Higgs boson

Z 
91 GeV

WW
160 GeV

ZH
240 GeV

t ҧt
350-365 

GeV

FCC-ee is greenest collider from Z to 𝑡 ҧ𝑡

https://crossmark.crossref.org/dialog/?doi=10.1038/s41567-020-0856-2
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parameter FCC-hh HL-LHC LHC

collision energy cms [TeV] 100 14 14

dipole field [T] 16 8.33 8.33

circumference [km] 97.75 26.7 26.7

beam current [A] 0.5 1.1 0.58

bunch intensity  [1011] 1 1 2.2 1.15

bunch spacing  [ns] 25 25 25 25

synchr. rad. power / ring [kW] 2400 7.3 3.6

SR power / length [W/m/ap.] 28.4 0.33 0.17

long. emit. damping time [h] 0.54 12.9 12.9

beta* [m] 1.1 0.3 0.15 (min.) 0.55

normalized emittance [mm] 2.2 2.5 3.75

peak luminosity [1034 cm -2s-1] 5 30 5 (lev.) 1

events/bunch crossing 170 1000 132 27

stored energy/beam [GJ] 8.4 0.7 0.36

FCC-hh (pp) collider parameters 
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FNAL 
demonstrator 

14.5 T Nb3Sn

from 
LHC technology 

8.3 T NbTi

via 
HL-LHC technology 

11 T Nb3Sn

FCC-hh: performance

order of magnitude performance 

increase in energy & luminosity

100 TeV cm collision energy                          

(vs 14 TeV for LHC)

20 ab-1 per experiment collected 

over 25 years of operation (vs 3 ab-1

for LHC)

similar performance increase as from 

Tevatron to LHC

key technology: high-field magnets
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16 T dipole design activities and options

Cos-theta

Blocks 

Common coils

Short model magnets (1.5 m lengths) will be built until ~2025

Swiss 
contribution 

Canted

Cos-theta

H2020 

INFN 

CEA 

CIEMAT 

PSI 

LBNL 

FNAL 
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FCC implementation - footprint baseline

present baseline position based on:
• lowest risk for construction, fastest and cheapest 

construction 

• feasible positions for large span caverns (most 

challenging structures)

• 90 – 100 km circumference

• 12 surface sites with few ha area each
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civil engineering studies

4.
5

yr
s 6

.
5

y

r

s

total construction 

duration 7 years

first sectors ready 

after 4.5 years

Tunnels 

Small Experimental C.

Dump CavernLarge Experimental C.
Service Cavern

Shafts
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FCC-tunnel integration in the arcs

FCC-ee FCC-hh

5.5 m inner diameter
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FCC integrated project technical schedule

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 34 35 36 37 38 39 40 41 42 4315 years operation

Project preparation &
administrative processes

Geological investigations, 
infrastructure detailed design and 

tendering preparation

Tunnel, site and technical infrastructure 
construction

FCC-ee accelerator R&D and technical design

FCC-ee detector
construction, installation, commissioning

FCC-ee detector 
technical design

Permis-
sions

Set up of international 
experiment collaborations, 

detector R&D and concept 
development

FCC-ee accelerator construction, 
installation, commissioning

Funding 
strategy

Funding and
in-kind 

contribution 
agreements

FCC-hh detector
construction, installation, 

commissioning

FCC-hh detector 
R&D,

technical design

Update
Permis

sions

FCC-hh accelerator construction, 
installation, commissioning

FCC-ee dismantling, CE 
& infrastructure 

adaptations FCC-hh

Funding and
in-kind 

contribution 
agreements

~ 25 years operation

FCC-hh accelerator 
R&D and technical 

design

Long model magnets, 
prototypes, preseries

16 T magnet 
industrialization and 

series production

Superconducting wire and magnet R&D, short models

70



• FCC-Conceptual Design Reports 
(completed in 2018):

• Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 
4 HE-LHC

• CDRs published in European Physical 

Journal C (Vol 1) and ST (Vol 2 – 4) 

EPJ C 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623 
, EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 
1109-1382

• Summary documents provided to 
EPPSU SG

• FCC-integral, FCC-ee, FCC-hh, HE-LHC

• Accessible on http://fcc-cdr.web.cern.ch/

FCC CDR and Study Documentation

https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3
https://link.springer.com/article/10.1140/epjst/e2019-900045-4
https://link.springer.com/article/10.1140/epjst/e2019-900087-0
https://link.springer.com/article/10.1140/epjst/e2019-900088-6
http://fcc-cdr.web.cern.ch/


2020 Update of the European Strategy for 

Particle Physics

Core sentence “order of the further FCC study”:

“Europe, together with its international partners, 

should investigate the technical and financial 

feasibility of a future hadron collider at CERN 

with a centre-of-mass energy of at least 100 TeV

and with an electron-positron Higgs and 

electroweak factory as a possible first stage. 

Such a feasibility study of the colliders and 

related infrastructure should be established as a 

global endeavour and be completed on the 

timescale of the next Strategy update.”
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Future Circular Collider Study

Michael Benedikt

FCCIS kick-off meeting, 9 November 2020

Financial feasibility

cost of tunnel: ~5.5 BCHF; FCC-ee: ~5-6 BCHF; FCC-hh: ~17 BCHF (if after FCC-ee)

→cannot be funded only from CERN’s (constant) budget + “one-off” contributions from 

non-Member States → need new mechanisms (global project funding model; EC? private?)

1st priority of feasibility study: find ~ 5 BCHF for the tunnel from outside CERN’s budget

Technical and administrative feasibility of tunnel 

❑ highly-populated area; two countries with different legislative frameworks

❑ land expropriation and reclassification

❑ high-risk zones

❑ environmental aspects

1st priority of feasibility study: no show-stopper for ~100 km tunnel in Geneva region

Technologies of machine and experiments

❑ huge challenges, but under control of our scientific community 

❑ pressing environmental aspects: energy, cooling, gases, etc.

1st priority of feasibility study: magnets; minimise environmental impact; energy 

efficiency & recovery

Gathering scientific, political, societal and other support

→ requires “political work” and communication campaign for “consensus building” with 

governments and other authorities, scientists from other fields, industry, general public, etc.

→ can FCC be a facility also for other disciplines (nuclear science, photon science, etc.)?

→ creative and proactive ideas for technology transfer from FCC to society 

FCC feasibility study: main challenges

Fabiola Gianotti: “CERN 

vision and goals  until next 
strategy update” FCCIS 

Kick-Off, 9 Nov. 2020
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FCC roadmap towards stage 1

2020 2025
FCC Feasibility Study

FCCIS H2020 DS 
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CE preparatory activities 2020 - 2030

• technical schedule of main processes leading to start of 
construction begin 2030ies

• for proof of principle feasibility: high risk area site 
investigations, 2022 – 2024

• followed by update of civil engineering conceptual design and 
CE cost estimate 2025
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FCC-ee complete arc half-cell mock up
including girder, vacuum system with antechamber + pumps, 
dipole, quadrupole + sext. magnets, BPMs, cooling + alignment 
systems, technical infrastructure interfaces.

key beam diagnostics elements
bunch-by-bunch turn-by-turn 
longitudinal charge density profiles 
based on electro-optical spectral 
decoding (beam tests at KIT/KARA) ;                        

ultra-low emittance 
measurement (X-ray interferometer 
tests at SuperKEKB, ALBA) ; beam-
loss monitors (IJCLab/KEK?) ;

beamstrahlung monitor (KEK);
polarimeter ; 

luminometer 

FCC key deliverables: prototypes by 2025
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high-yield positron source 
target with DC SC solenoid or flux 
concentrator 

400 MHz SRF cryomodule, 
+ prototype multi-cell 
cavities for FCC ZH operation
High-efficiency RF power 
sources

positron capture linac
large aperture S-band linac

beam test of e+ source & capture 
linac at SwissFEL – yield 
measurement  

 

 

SwissFEL
0.4-6 GeV Linac

ARAMIS 
Undulator Line

extraction 

magnet
focusing 

quadrupoles 

(may not 
needed tbv)

Sc-capture solenoid

Conversion target 

assemblyDD

S-band capture structure 

In nc (or sc?) long solenoid

Separationmagnet

Diagnostics:

Screen for spectrum

Charge monitor

Beam stop
SwissFEL
linac

strong support from Switzerland via CHART II program 2019 – 2024 for                     
FCC-ee injector, HFM, beam optics developments, geology and geodesy activities.

FCC key deliverables: prototypes by 2025
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H2020 DS FCC Innovation Study 2020-24

Beneficiaries

Topic INFRADEV-01-2019-2020

Grant Agreement FCCIS 951754

Duration 48 months

From-to 2 Nov 2020 – 1 Nov 2024

Project cost 7 435 865 €

EU contribution 2 999 850 €

Beneficiaries 16

Partners 6

Partners

FCCIS kickoff

& physics WS, 

Nov’20: 

910 participants
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Status of Global FCC Collaboration

30
Companies

34
Countries

141
Institutes

EC
H2020

increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will 

be essential to further advance and prepare the implementation of FCC



SR effects of LEP
high currents of KEKB and PEP-II
top-up of KEKB and PEP-II
crab waist of DAFNE
crab waist & low by* of SuperKEKB
e+ source of KEKB 
cryo availability of LHC
spin gymnastics of HERA  

FCC-ee
individual parameters 
mostly relaxed compared 
with those in “demonstrator
machines”

“new” effects: beamstrahlung → lifetime limit, E spread, x-z beam-
beam instability, synchrotron radiation in quadrupole magnets …


circular e+e- colliders: glorious history & exciting future
heeding lessons learnt:

trend & challenge: making future colliders truly green !

• next steps: concrete local/regional implementation scenario in 
collaboration with host states, machine optimization, physics studies 
and technology R&D, performed via global collaboration and 
supported by EC H2020 Design Study, to prove feasibility by 2025/26

summary & outlook



“An e+-e - storage ring in the range of a few hundred GeV 

in the centre of mass can be built with present 

technology...” “…the most useful project on the horizon.”

Burt Richter, 1976 NIM 136 (1976) 47-60



“Of course, it should not be the 
size of an accelerator, but its 

costs which must be minimized.”

Gustav-Adolf Voss,
builder of PETRA, 
PAC1995,

† 5. October 2013

is  80-100 km too big?



…surely great times ahead!

Kjell Johnsen “Pief” Panofsky

Robert H. Wilson Lyn Evans Herwig Schopper

Satoshi Ozaki
Mike Lamont



spare slides



2

targetbeamc.m. 2 cMEE =

beamc.m. 2EE =

centre-of-mass energy:

beam hits 

a “fixed target”

two equal 

beams collide

colliding two beams against each other can provide 
much higher centre-of-mass energies than fixed target!

why colliders ? - energy

𝐸
c.m..

= 2 𝐸1𝐸2
for two high-energy beams 

of unequal energy

colliders were invented (1943) and patented (1953) by Rolf Wideröe
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RF system

Colliders with 
superconducting 

magnet & RF

advances by new technologies and new materials

A. Ballarino
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powerful instruments for discovery 
and precision measurement

A. Ballarino



still many open questions

Known matter is only 5% of universe!

➢ what is dark matter?
➢ what is dark energy?
➢ why more matter than antimatter?
➢ what about gravity? 

F. Gianotti



collider figure of merit: luminosity

reaction rate luminosity
R=  L

cross section

horizontal & vertical 
rms beam size

at collision point

bunch 
collision

rate

bunch 
population

geometric factor
(crossing angle, 

hour glass, pinch, …)

 tends to 
decrease
as energy-2

peak luminosity increased by almost
7 orders of magnitude over 60 years

V. Shiltsev & F.Z., arXiv:2003.09084, submitted to RMP



Luminosity

N Number of particles per bunch

nb Number of bunches

f Revolution frequency

σ* Beam size at interaction point

G reduction factor due to crossing 

angle and “hourglass effect”

ε Emittance

εn Normalized emittance

β* Beta function at IP 

s * = b*e

M. Lamont

various limitations:

beam current (power)
beambeam tune shift
beamstrahlung….



sketch of beam-beam collision

‘weak beam’ particles 



(nonlinear) beam-beam force 

center of

opposing 

beam

at small amplitude similar to effect of defocusing quadrupole 

for single 

collision

for pure head-on collision 



luminosity and vertical tune-shift parameter versus beam current for 

various electron-positron colliders; the tune shift saturates at some 

current value, above which the luminosity grows linearly

J. Seeman, SLAC-PUB-3825, 1985

beam-beam limit in e+e- colliders



beam-beam limit in e+e- colliders
with strong radiation damping

damping decrement per IP 

R. Assmann

∝ 𝛾1.2


