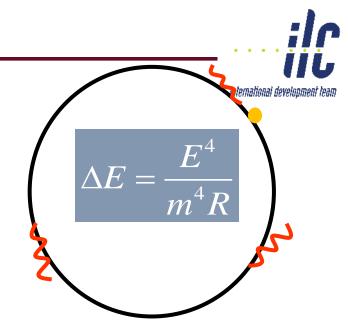
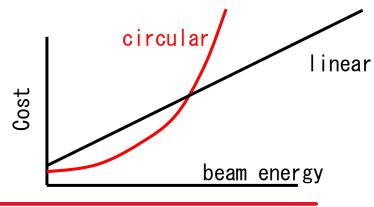
The International Linear Collider

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK


- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary

ILC250 accelerator facility

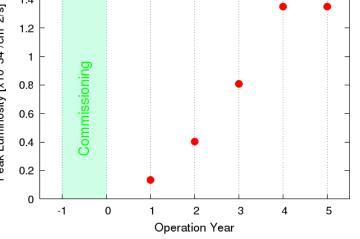

		Item	Parameters
e- Main Linac	Report -	C.M. Energy	250 GeV
		Length	20km
e+ Source		Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻
Beam delivery system (BDS)		Repetition	5 Hz
	Physics Detectors	Beam Pulse Period	0.73 ms
e	- Source	Beam Current	5.8 mA (in pulse
	e+ Main Liinac	Beam size (y) at FF	7.7 nm@250Ge
Damping Ring	al 20.5 km	SRF Cavity G. Q ₀	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰
Key Technologies			
damping ring few GeV bunch main linac	Diogy final focus	8,000 SRF cavities wit	Il be used.

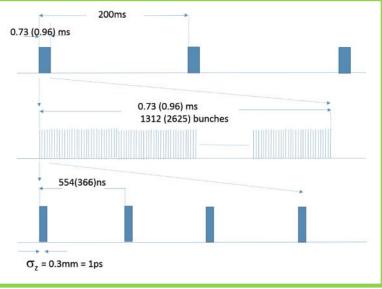
Main advantages

- A linear accelerator is more advantageous for accelerating electron and/or positron beams to higher energies.
- The spin of the electron and/or positron beam can be maintained during the acceleration and collision. This can help significantly improve measurement precision.
- The small surface resistance of the SRF accelerating structure (cavity) made of Nb enables the efficient power transfer from the AC power source to the beam.
- Further energy efficiency improvements are considered as part of the of Green ILC concept, which aims to establish a sustainable laboratory.

Circulating beam loses energy by synchrotron radiation. Linear collider can extend its collision energy by longer tunnel/ higher gradient.

Technical Maturity


- ILC based on superconducting radiofrequency (SRF) technology started its R&D from 2005 (GDE).
 Reference Design Report (RDR) was published in 2007 and TDR was published in 2013.
- More than 2,400 researchers contributed to the TDR.
- The SRF technology's maturity was proven by the operation of the European X-ray Free Electron Laser (X-FEL) in Hamburg, where 800 superconducting cavities (1/10 of ILC SRF cavities) were installed.
- In addition to European XFEL, LCLS-II at SLAC, SHINE in Shanghai are under construction.
- Nano-beam technology has been demonstrated at ATF hosted in KEK under international collaboration and almost satisfied the requirements of the ILC.
- Remaining technical preparation (such as mass-production of SRF cavities, positron source, beam dump) can be carried out during the preparation phase at Pre-lab before ILC construction. These are listed in "Recommendations on ILC Project Implementation".


ILC machine parameters

Beam EnergyGeV125 (e-) and 125 (e+)Peak Luminosity (10^34)cm-2 s-11.35Int. Luminosityab-1/yr0.24* * 5,000-hour operation at peak luminosityBeam dE/E at IP0.188% (e-), 0.150% (e+)Transv. Beam sizes at IP x/ynm515/7.66Rms bunch length /cm0.03 (σ₂)beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunches1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	ILC	electron/positron	ILC250			ľ	LC Lum	in
Kins bullerillengtif/Cin0.03 (62)beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunchesr1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Beam Energy	GeV	125 (e-) and 125 (e+)		[s/	.4 -		
Kins buller length / beta*mm0.03 (62)beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunchesr1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Peak Luminosity (10^34)	cm-2 s-1	1.35		1 /cm^2			
Kins bulch length / beta*cm0.03 (62)beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunchesr1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Int. Luminosity	ab-1/yr	0.24* * 5,000-hour operation at peak lu	minosity	×10^34		ning	
Kins bulleri length /Cin0.03 (62)beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunches-1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Beam dE/E at IP		0.188% (e-), 0.150% (e+)		nosity [nissio	
Kins bulleri length /Cin0.03 (62)beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunches-1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Transv. Beam sizes at IP x/y	nm	515/7.66		د Lumir ۵).4 -	Com	
beta*mmbx*=13mm, by*=0.41mmCrossing anglemrad14Rep./Rev. frequencyHz5Bunch spacingns554# of bunches1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Rms bunch length /	cm	0.03 (σ _z)		Peal).2 -		
Rep./Rev. frequencyHz5Bunch spacingns554# of bunches1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	beta*	mm	bx*=13mm, by*=0.41mm			•	-1 ()
Rep./Rev. frequencyHz5Bunch spacingns554# of bunches1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B USYears(~1) + 4(prep.) + 9(construction)	Crossing angle	mrad	14				200	
# of bunches1,312Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Rep./Rev. frequency	Hz	5		0.7 <u>3 (</u>	0.96) m		15
Length/Circumferencekm20.5Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Bunch spacing	ns	554			- Propaga		
Facility site powerMW111Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	# of bunches		1,312			•		
Cost (value) range\$B US~5 (tunnel and accelerator)Timescale till operationsyears(~1) + 4(prep.) + 9(construction)	Length/Circumference	km	20.5					
Timescale till operations years (~1) + 4(prep.) + 9(construction)	Facility site power	MW	111			55	54(366)ns	
	Cost (value) range	\$B US	~5 (tunnel and accelerator)					
	Timescale till operations	years	(~1) + 4(prep.) + 9(construction)			- 0.2-	om - 100	

LC Luminosity Scenario (ECM=250GeV)

Potential for upgrades

The ILC can be upgraded to higher energy and luminosity.

			Z-Pc	ole [4]		Higgs [2,5]		500Ge	eV [1*]	TeV [1*]	
			Baseline	Lum. Up	Baseline	Lum. Up	L Up.10Hz	Baseline	Lum. Up	case B	
Center-of-Mass Energy	E _{CM}	GeV	91.2	91.2	250	250	250	500	500	1000	Energy
Beam Energy	E _{beam}	GeV	45.6	45.6	125	125	125	250	250	500	
Collision rate	f_{col}	Hz	3.7	3.7	5	5	10	5	5	4	
Pluse interval in electron main linac		ms	135	135	200	200	100	200	200	200	
Number of bunches	n _b		1312	2625	1312	2625	2625	1312	2625	2450	
Bunch population	Ν	10 ¹⁰	2	2	2	2	2	2	2	1.737	
Bunch separation	$\Delta t_{\rm b}$	ns	554	554	554	366	366	554	366	366	
Beam current		mA	5.79	5.79	5.79	8.75	8.75	5.79	8.75	7.60	
Average beam power at IP (2 beams)	PB	MW	1.42	2.84	5.26	10.5	21.0	10.5	21.0	27.3	
RMS bunch length at ML & IP	σz	mm	0.41	0.41	0.30	0.30	0.30	0.30	0.30	0.225	
Emittance at IP (x)	γe^*_{\times}	μm	6.2	6.2	5.0	5.0	5.0	10.0	10.0	10.0	
Emittance at IP (y)	γe [*] y	nm	48.5	48.5	35.0	35.0	35.0	35.0	35.0	30.0	
Beam size at IP (x)	σ^*_{\times}	μm	1.118	1.118	0.515	0.515	0.515	0.474	0.474	0.335	
Beam size at IP (y)	$\sigma^*_{\scriptscriptstyle Y}$	nm	14.56	14.56	7.66	7.66	7.66	5.86	5.86	2.66	
_uminosity	L	10 ³⁴ /cm ² /s	0.205	0.410	1.35	2.70	5.40	1.79	3.60	5.11	Lumi.
Luminosity enhancement factor	HD		2.16	2.16	2.55	2.55	2.55	2.38	2.39	1.93	
Luminosity at top 1%	$L_{0.01}/L$	%	99.0	99.0	74	74	74	58	58	45	
Number of beamstrahlung photons	n _g		0.841	0.841	1.91	1.91	1.91	1.82	1.82	2.05	
Beamstrahlung energy loss	δ_{BS}	%	0.157	0.157	2.62	2.62	2.62	4.5	4.5	10.5	
AC power [6]	Psite	MW			111	138	198	173	215	300	
Site length	Lsite	km	20.5	20.5	20.5	20.5	20.5	31	31	40	

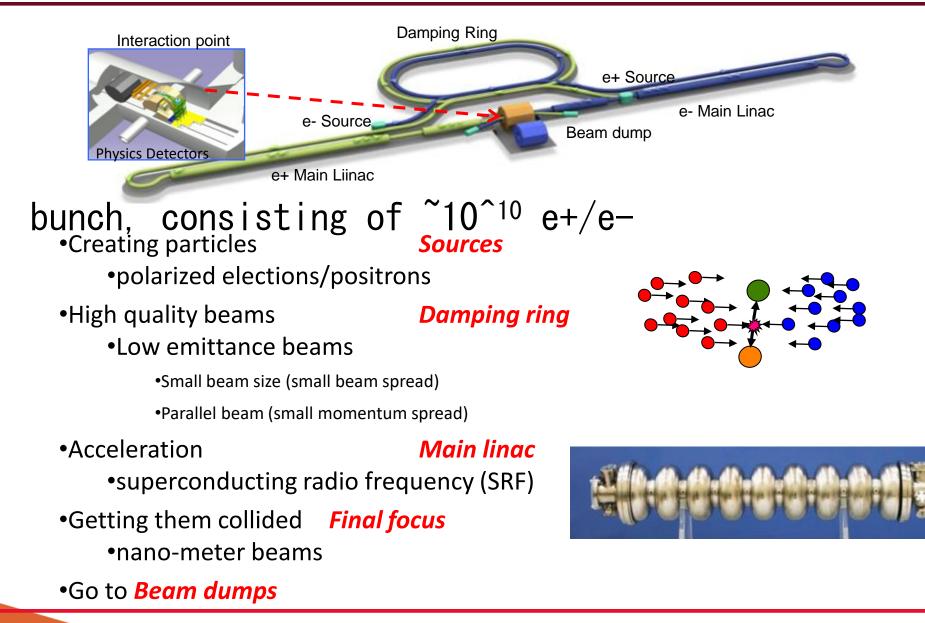
Construction cost

ILC accelerator (including tunnel) construction cost is ~5 B\$.

	TDR: ILC500	ILC250	Conversion to:
	[B ILCU]	[B ILCU]*	[B JPY]
	(Estimated by GDE)	(Estimated by LCC)	(Reported to MEXT/SCJ)
Accelerator Construction: sum	n/a	n/a	635.0 ~ 702.8
Value: sub-sum	7.98	4.78 ~ 5.26	515.2 ~ 583.0
Tunnel & building	1.46	1.01	111.0 ~ 129.0
Accelerator & utility	6.52	3.77 ~ 4.24	404.2 ~ 454.0
Labor: Human Resource	22.9 M person-hours	17.2 M person-hours	119.8
	(13.5 K person-years)	(10.1 K person-years)	
Detector Construction: sum	n/a	n/a	100.5
Value: Detectors (SiD+ILD)	0.315+0.392	0.315+0.392	76.6
Labor: Human Resource (SiD + ILD)	748+1,400 person-years	748+1,400 person-years	23.9
Operation/year (Acc.) : sum	n/a	n/a	36.6 ~ 39.2
Value: Utilities/Maintenance	0.390	0.290 ~ 0.316	29.0 ~ 31.6
Labor: Human Resource	850 FTE	638 FTE	7.6
Others (Acc. Preparation)	n/a	n/a	23.3
Uncertainty	25%	25%	25%
Contingency	10%	10%	10%
Decommission	n/a	n/a	Equiv. to 2-year op. cost

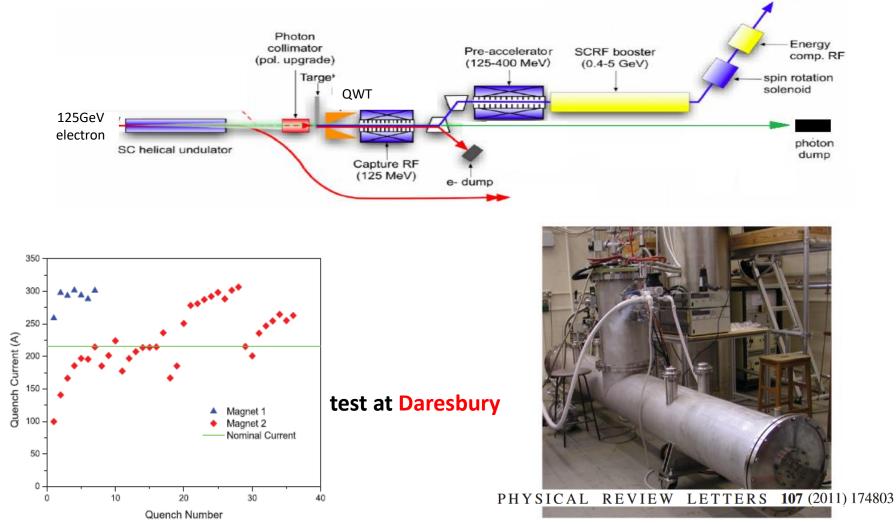
*1 ILCU= 1 US\$ in 2012 prices

The International Linear Collider


Shin MICHIZONO

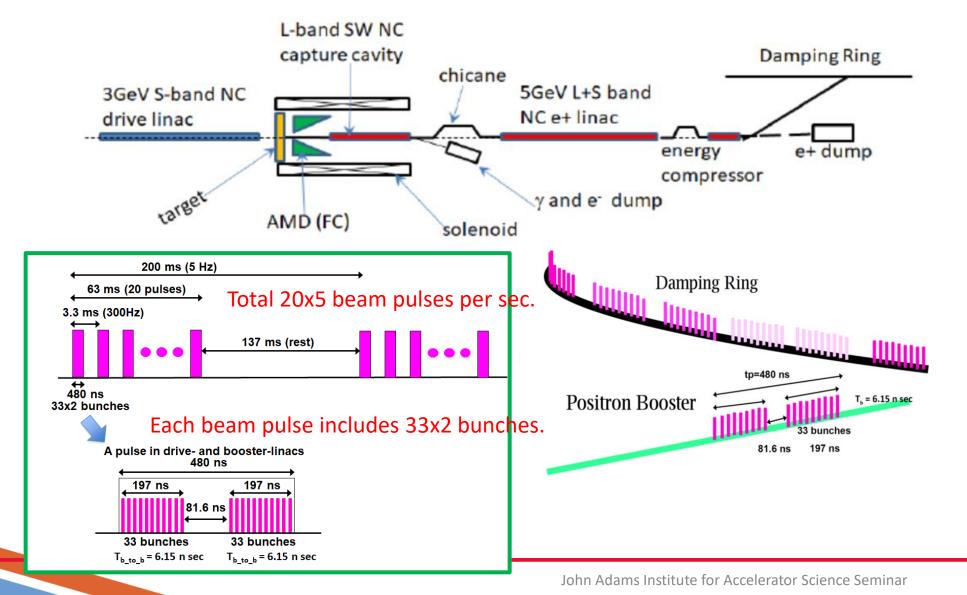
International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary


Area systems of the ILC

Positron Source (Undulator)

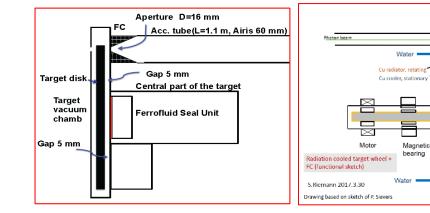
125 GeV electrons are injected to the helical undulator. The photons produced at the undulator is used for the electron/positron pair creation at the rotating target. Polarized positrons can be generated. **Description Description Descri**



Two undulators in one cryomodule were tested. Both achieved nominal magnetic fields.

international develo

Positron Source (e-Driven)


Extra 3GeV linac is used for the positron generation. High energy electrons are not necessary. (Electron independent commissioning is possible. However, polarization is not available.)

international develops

Positron rotating target

Strip line

Magnetic

bearing

	undulator	E-Driven	Existing X-ray generator
Cooling/Seal	Radiation/ magnetic levitation	water/magnetic fluid	water/magnetic fluid
radius (mm)	500	250	160
weight (kg)	50*	65*	17
Tangential velocity (m/s)	100	5	160
rotation (rpm)	2,000	200	10,000
Beam heat load(kW)	2	20	90
Vacuum pressure (Pa)	10-6	10-6	10-4

*The weight depends on the design of the disk part and the material

- Reliable rotating target
- Replacement of rotating target

The International Linear Collider

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources

- Nano-beam
- SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary

Nano-beam R&D at ATF2

ROYAL HOLLOWAY

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

Institute of High Energy Physics

Chinese Academy of Sciences

東京大学 SLAC NATIONAL ACCELERATOR LABORATORY

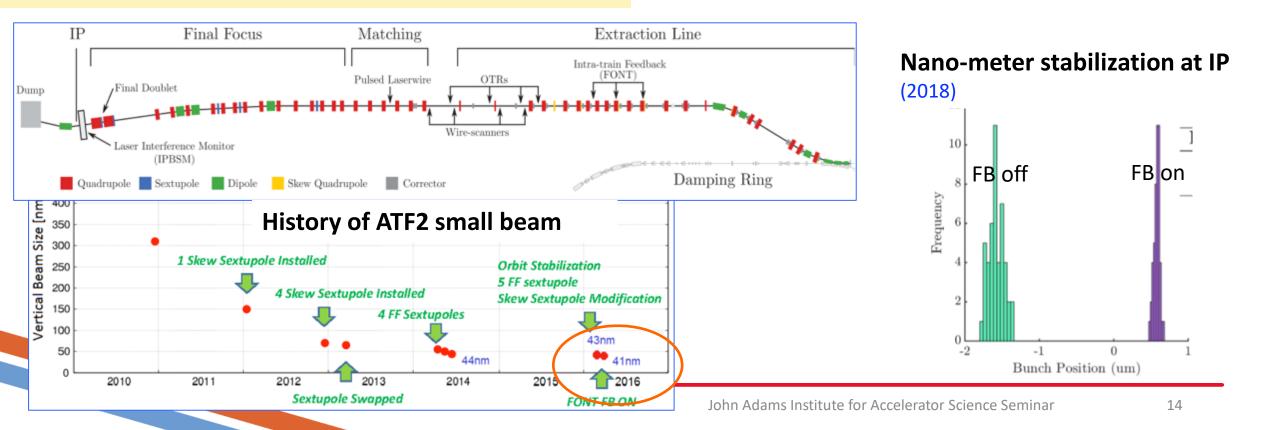
‡ Fermilab

ATF2 Goal : **37** nm \rightarrow ILC **7.7** nm (ILC250); achieved **41** nm (2016)

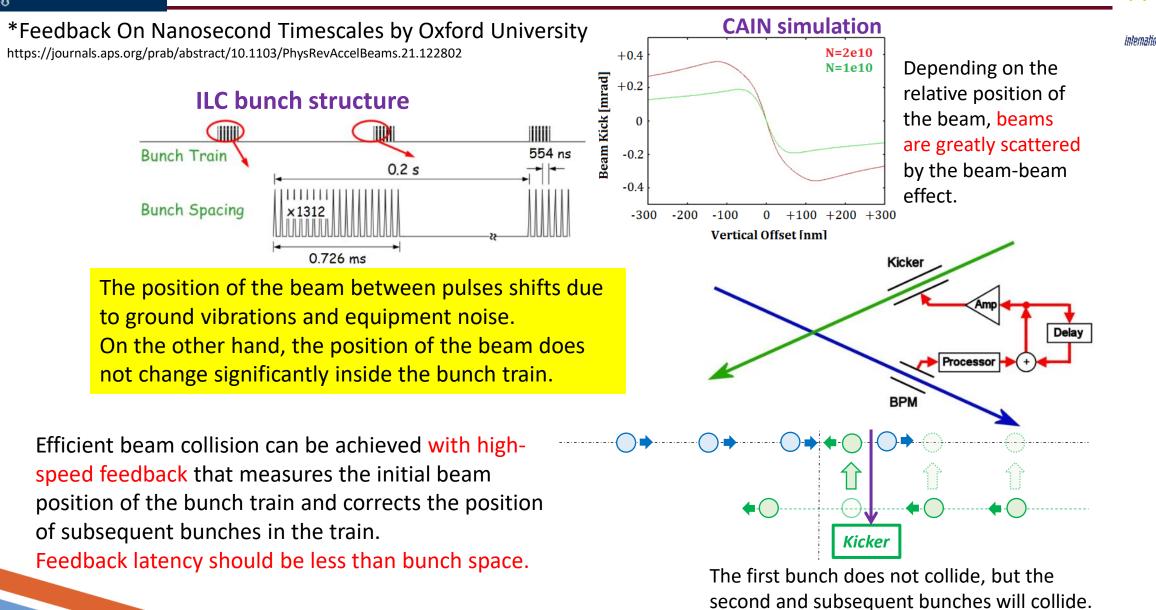
Goal 2: Develop the position stabilization for the ILC collision

FB latency 133 nsec achieved (target: < 366 nsec)</p>

UNIVERSITY OF


DXFORD

D

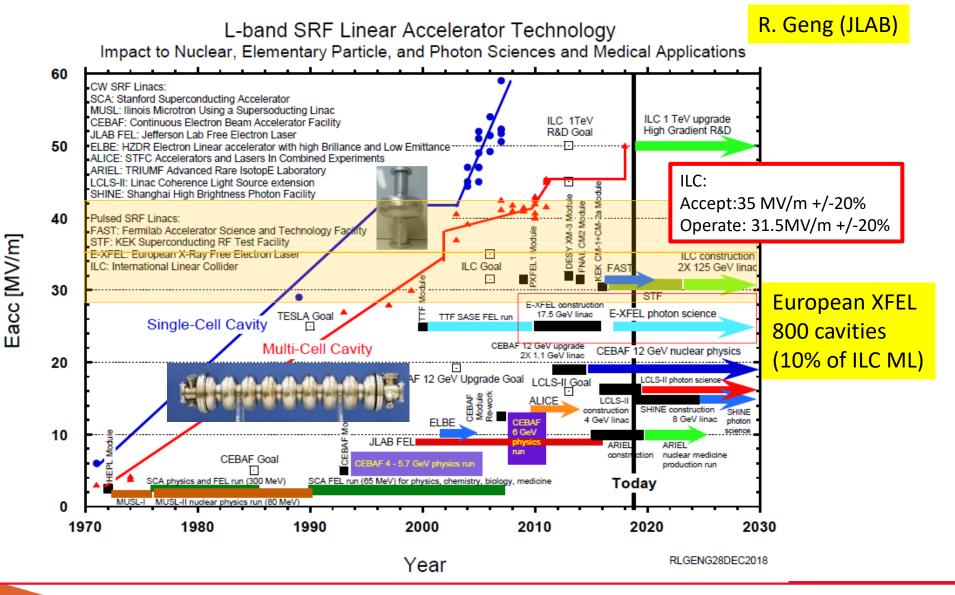

Laboratoire d'Annecy-le-Vieux

de Physique des Particules

DE L'ACCÉLÉRATEUR L I N É A I R E

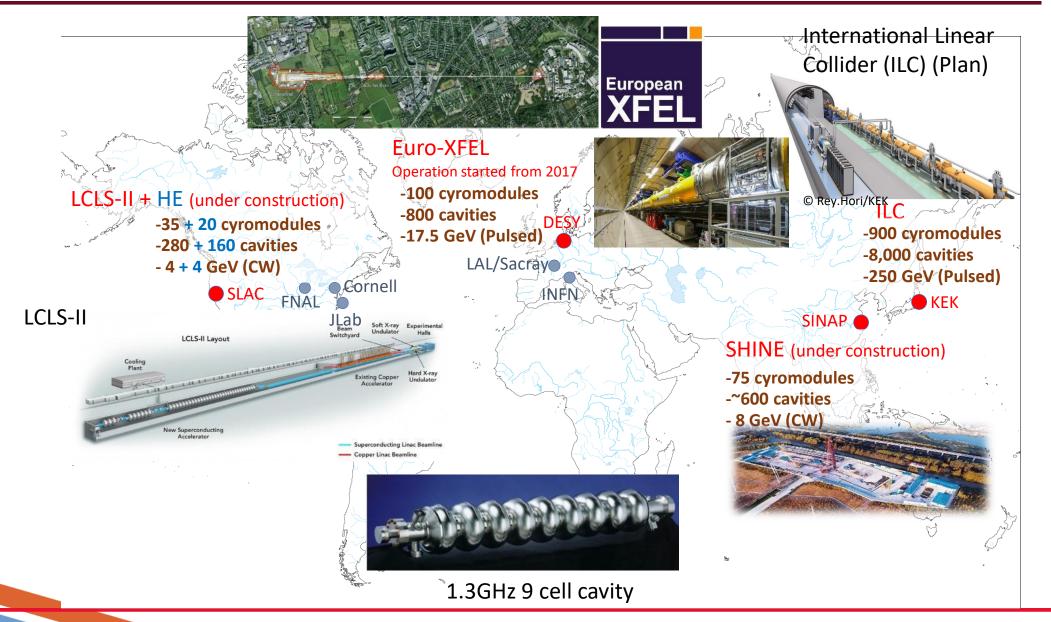
FONT* Bunch train feedback at final focus

The International Linear Collider


Shin MICHIZONO

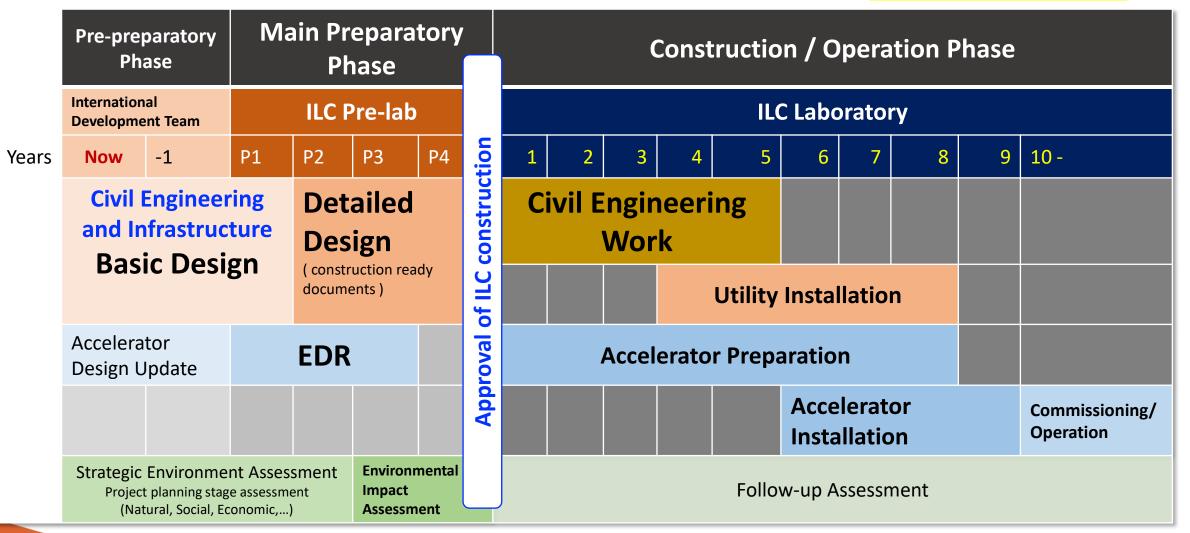
International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary


Matured SRF technologies

Worldwide large scale SRF accelerators

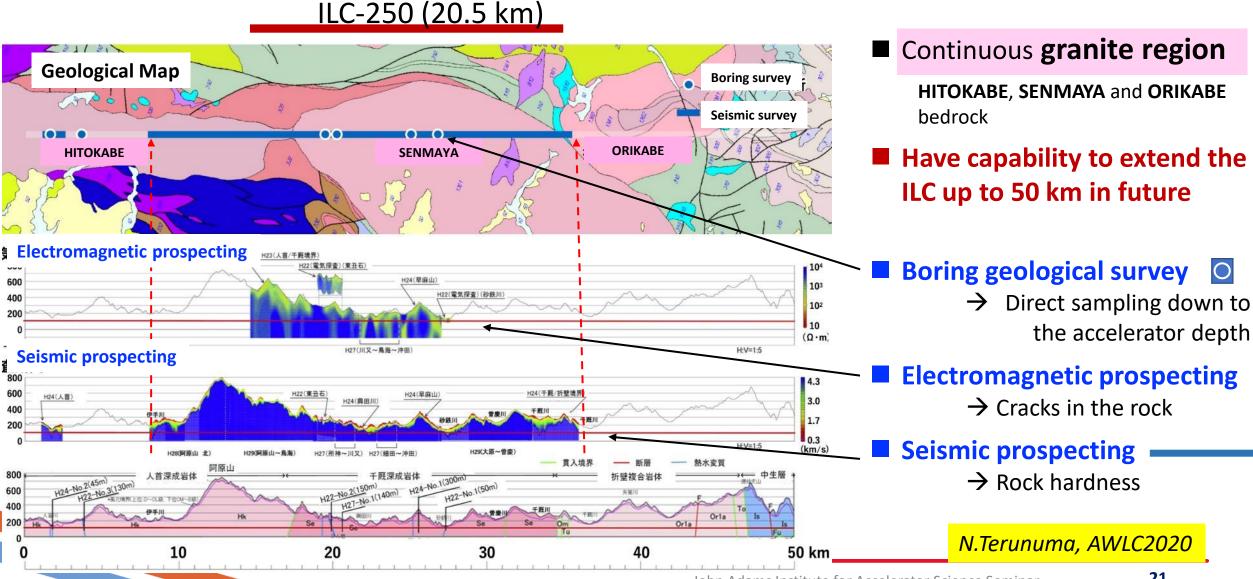
The International Linear Collider


Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

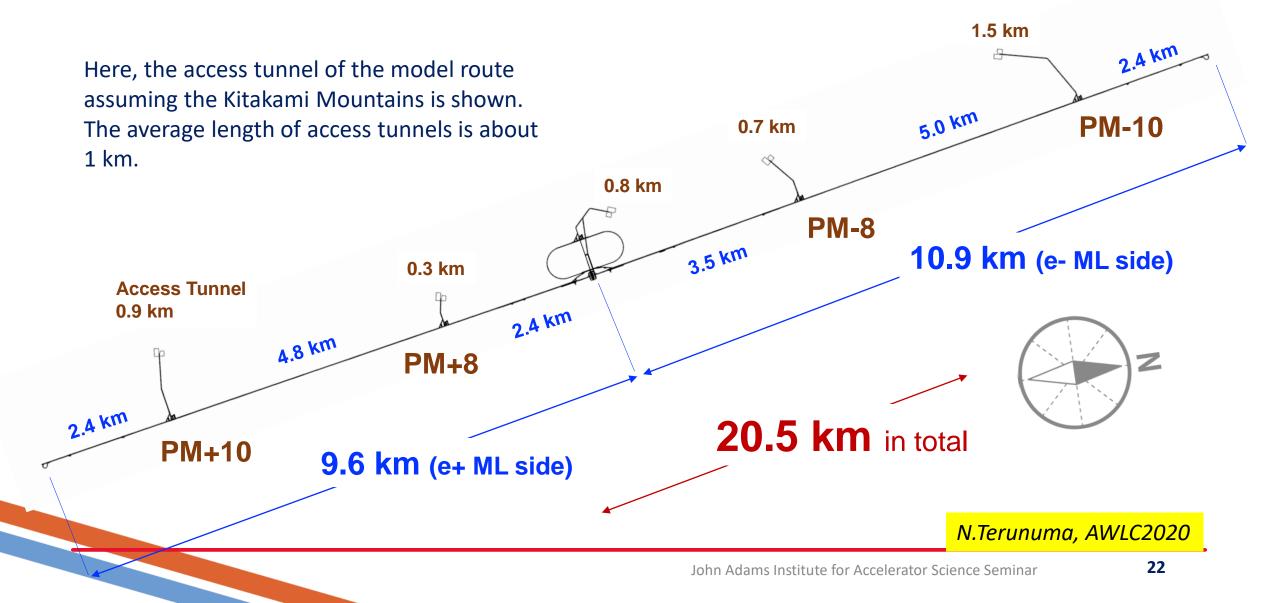
- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
 - International Development Team (IDT)
 - Global situation
 - Summary

Civil Engineering related Schedule for ILC-250GeV


N.Terunuma, AWLC2020 mai development learn

References; (1) TDR, (2) Recommendations on ILC Project Implementation, 2019.

Geological Surveys for ILC: Kitakami Mountains



21

John Adams Institute for Accelerator Science Seminar


Scale of the ILC-250GeV

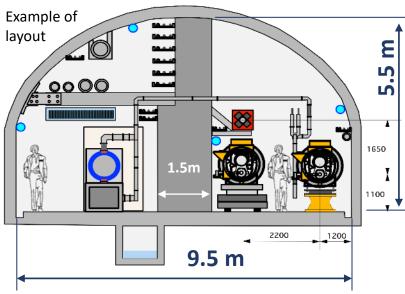
Laser Straight Section

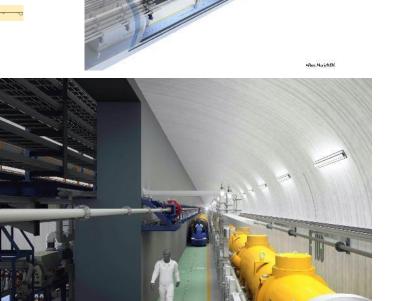
- BDS: "laser straight" in vertical
- ML: Cryomodule will be aligned to the geoid.

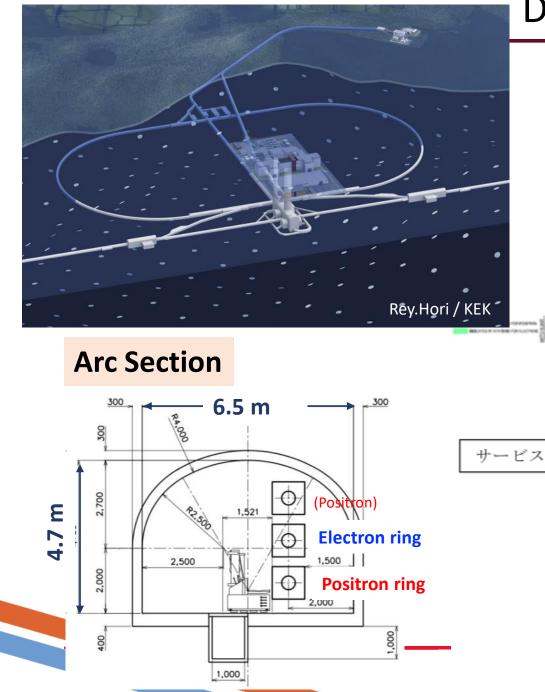
 ILC optics DECK has been updated to incorporate corrections for geoid and straight sections around the IP.

Asymmetric straight sections

- The e- side is longer to include undulator and dog-leg.
- If e+ and e- MLs are at the same altitude, the IP is tilted by 0.1 mrad.
- If e- ML is placed 0.6 m higher than e+, the IP has no tilt and BDSs are symmetrically sloped to the IP.


N.Terunuma, AWLC2020


Main Linac (ML) tunnel

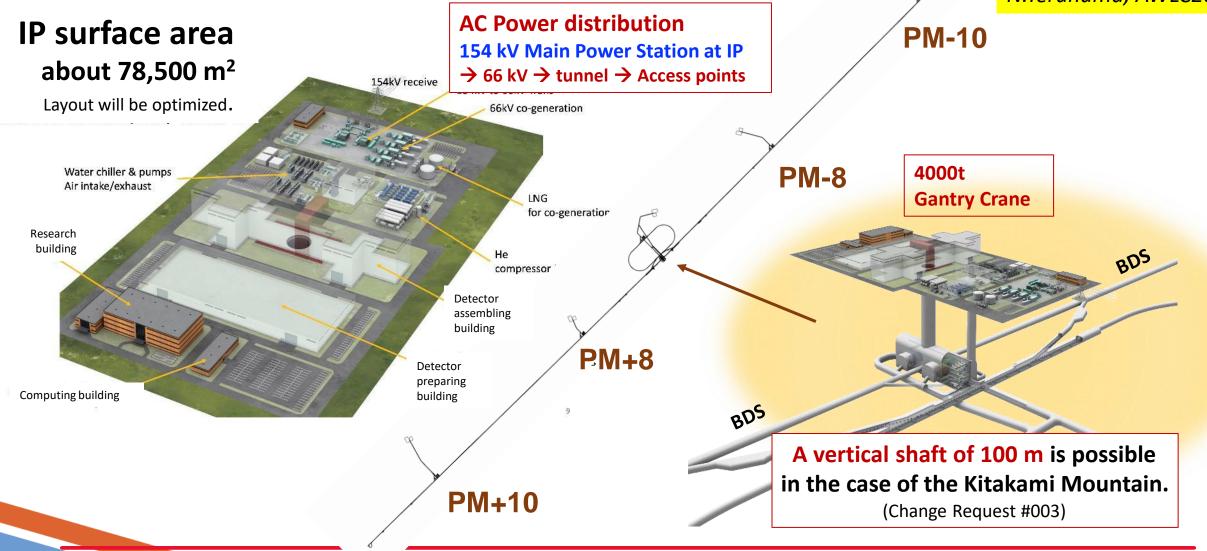

- 66 kV distribution cables
- Colling water pipes
- Fan Coil Units
- Low power and signal cables
- RF klystrons and modulators
 - Electric Power Stations

- 15 km in (e+e-) total
- follow the geoid in vertical
- Kamaboko 9.5m X 5.5m
- 1.5m central radiation shield
- Further optimization will be done.

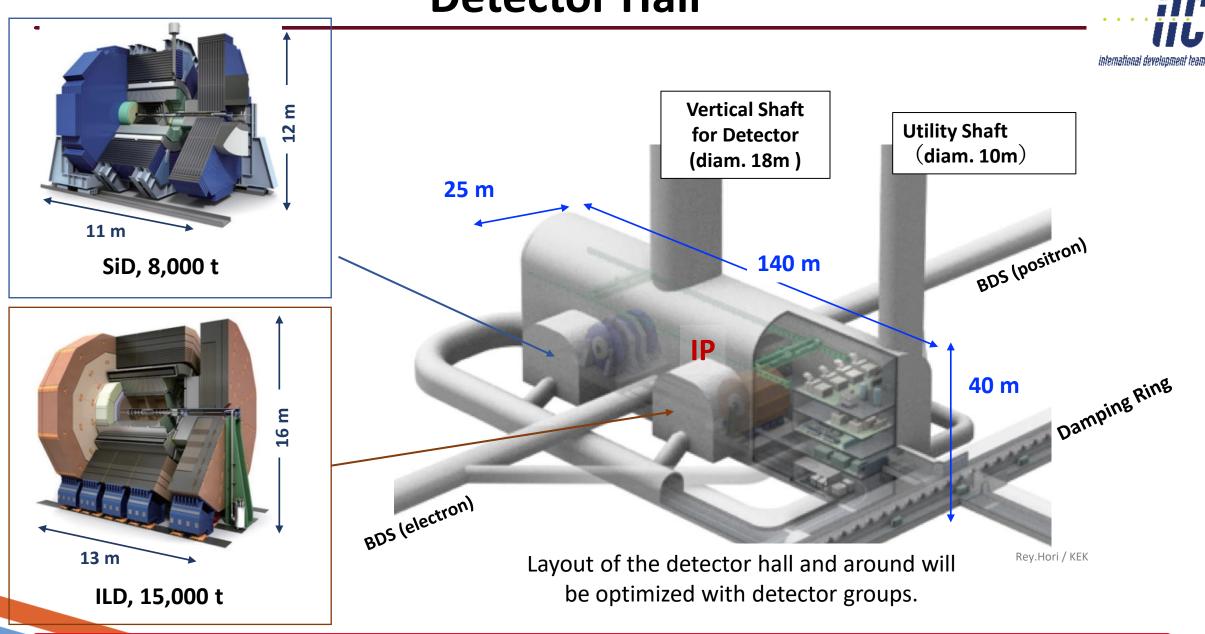
- ML Cryomodules
- RTML
- Low power and signal cables

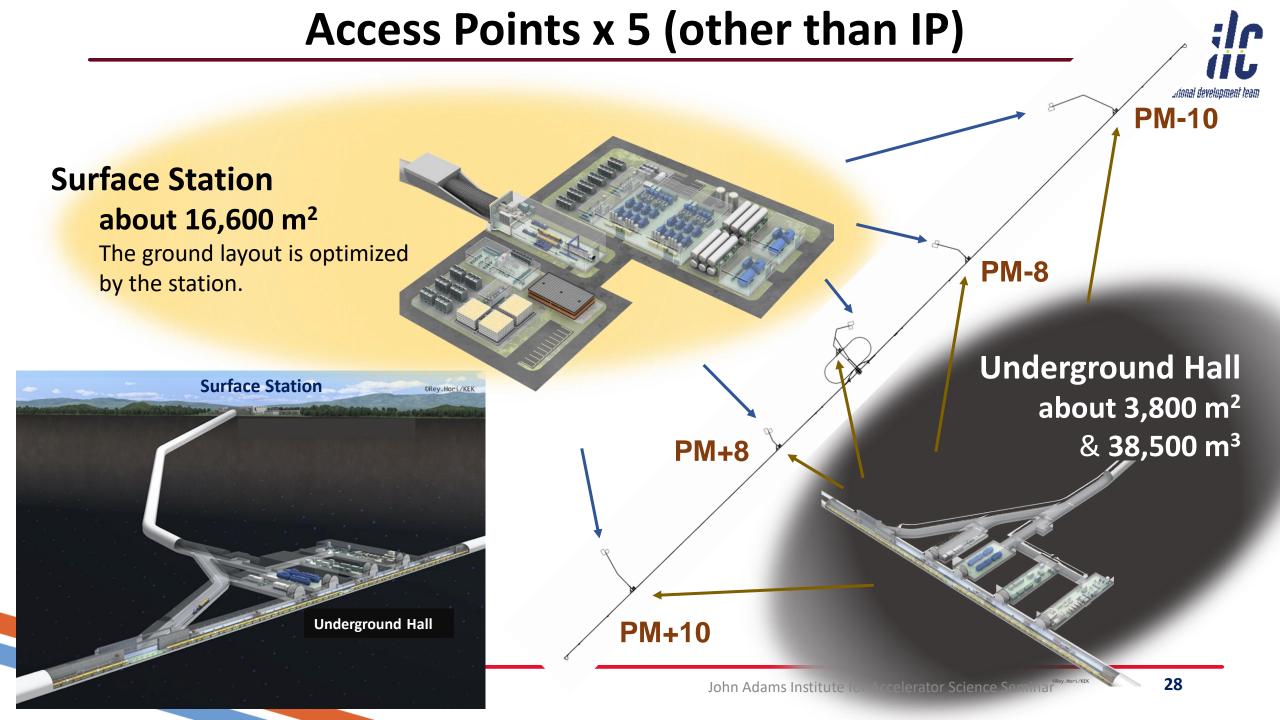
Damping Ring

Circumference: 3.2km
 Start with two rings

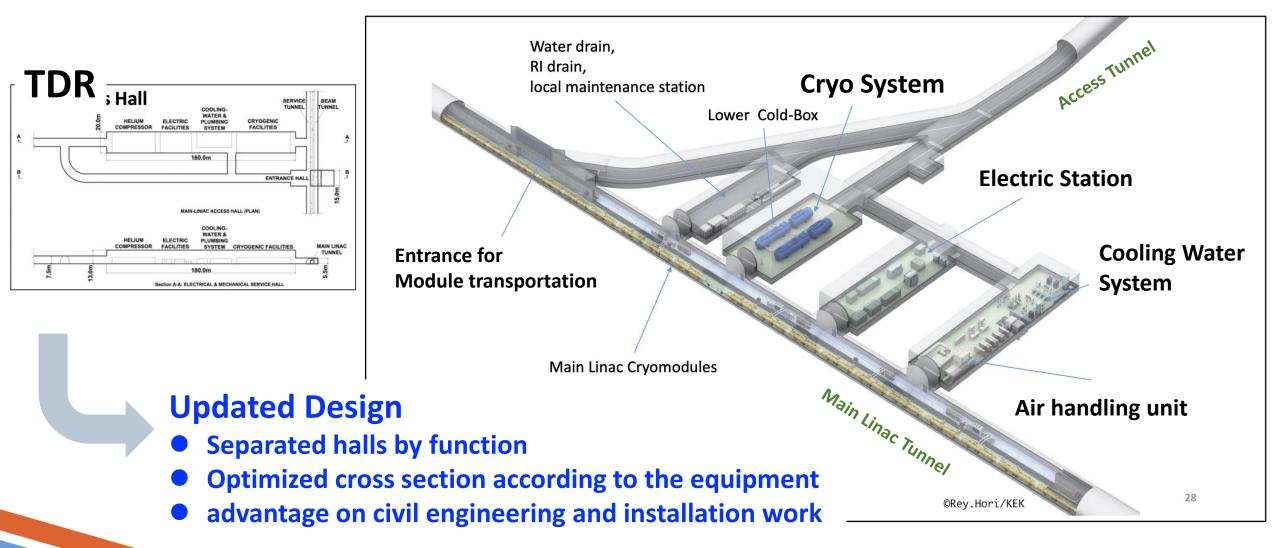

N.Terunuma, AWLC2020

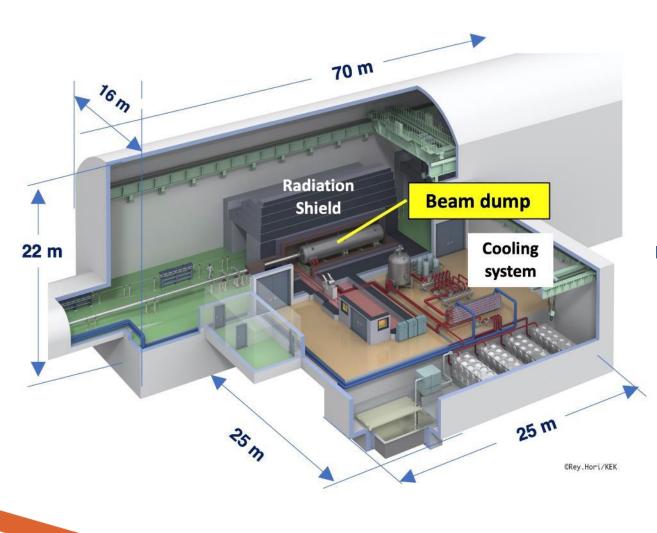
Arc section: single tunnel, no central shield.
 Straight section: Kamaboko with a central shield (3.5m in TDR).




Interaction Point (IP)

N.Terunuma, AWLC2020

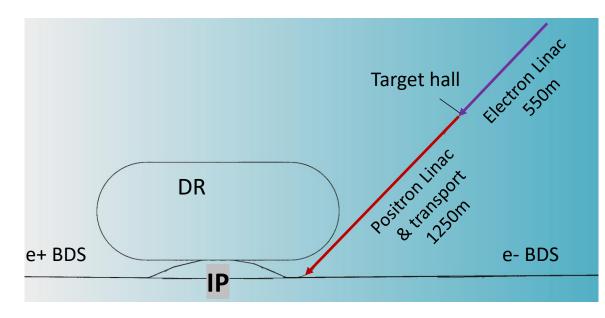

Detector Hall


Underground Access/utility Halls

Cavern for Main Beam Dump

Three big caverns

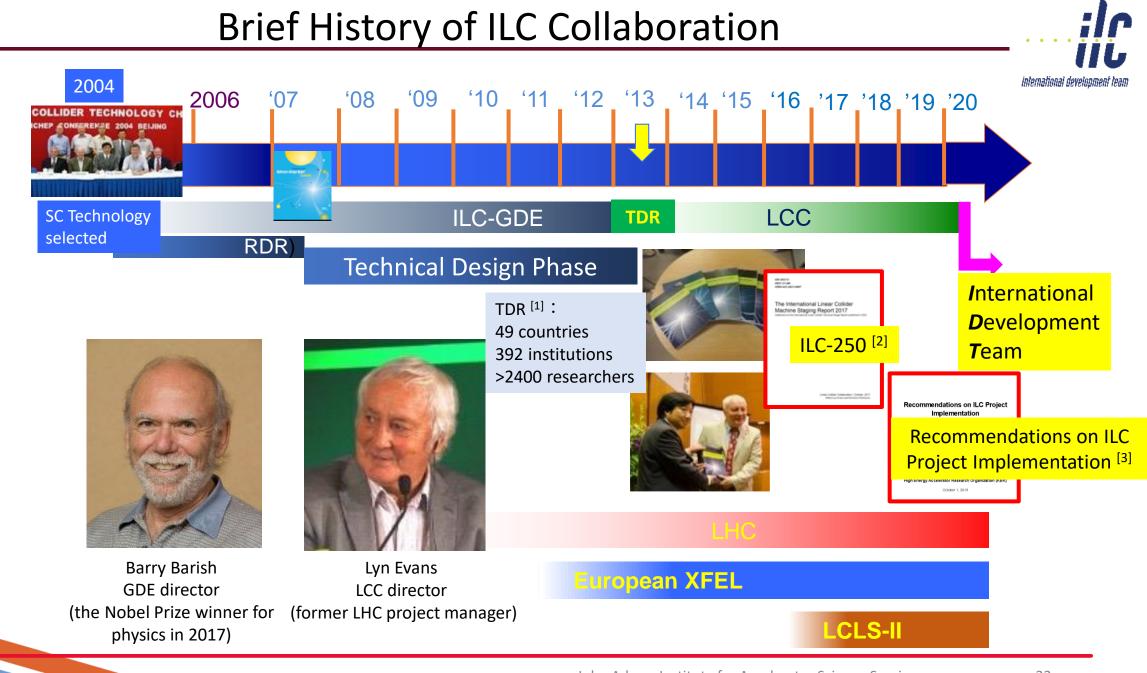
- Two main beam dumps
- e- dump for undulator, low energy collision (5 x 5 Hz)
- The main beam dump has been designed for **1 TeV collisions.**
 - 5 m thick concrete shield in all directions
 - 17 MW power cooling (wider utility hall)
 - ¼ volume of detector hall
 - The civil engineering design is updating with experts from Industry (AAA).


Civil Engineering Design for Positron Source

Since civil engineering (CE) work will start immediately after the preparation period, a lot of detailed design work is expected during the preparation period, so the CFS Group will proceed with the basic design of the CE for the positron source in advance. Design study for e-driven positron source

- Have the CE design to **include the** undulator scheme in any scenarios.
 - **TDR based layout**
 - and have **Photon dump line** in the BDS tunnel
- E-driven source will be in separated dedicated tunnel.
 - add on to the TDR based design
 - From the CE view, sharing of BDS tunnel is not realistic.
 - e-driven study group is developing this design.
 - Access tunnel should be considered.

- Figure shows the length of the linac, taking into account the size and placement of devices.
- Positron injection into the DR uses RTL.
- Joint angle to the BDS tunnel will be optimized for local conditions.


The International Linear Collider

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary

From IDT to Pre-Lab, ILC construction phase

IDT is formed under ICFA. KEK serves as its host.

Stage 1 International Development Team (~1.5 years)

ILC Pre-Lab. is established by MOU's among the laboratories.

Stage 2 ILC Pre-Laboratory (4 years)

ILC Lab. is established by governmental agreement.

Stage 3 ILC Laboratory (10 years for construction)

Stage 4 Experiment at ILC!

International Development Team (IDT)

ILC International Development Team

ICFA

Executive Board

Americas LiaisonAndrew Lankford (UC Irvine)Working Group 2 ChairShinichiro Michizono (KEK)Working Group 3 ChairHitoshi Murayama (UC Berkeley/U. Tokyo)Executive Board Chair and Working Group 1 ChairTatsuya Nakada (EPFL)KEK LiaisonYasuhiro Okada (KEK)Europe LiaisonSteinar Stapnes (CERN)Asia-Pacific LiaisonGeoffrey Taylor (U. Melbourne)

IDT: to prepare for smooth transition to the ILC Pre-lab

- Prepare a proposal for the organization and governance of the ILC Pre-Lab
- Prepare the work and deliverables of the ILC Prelaboratory and workout a scenario for contributions with national and regional partners

Working Group 1 Pre-Lab Setup Working Group 2 Accelerator Working Group 3 Physics & Detectors

KEK's role at IDT and beyond

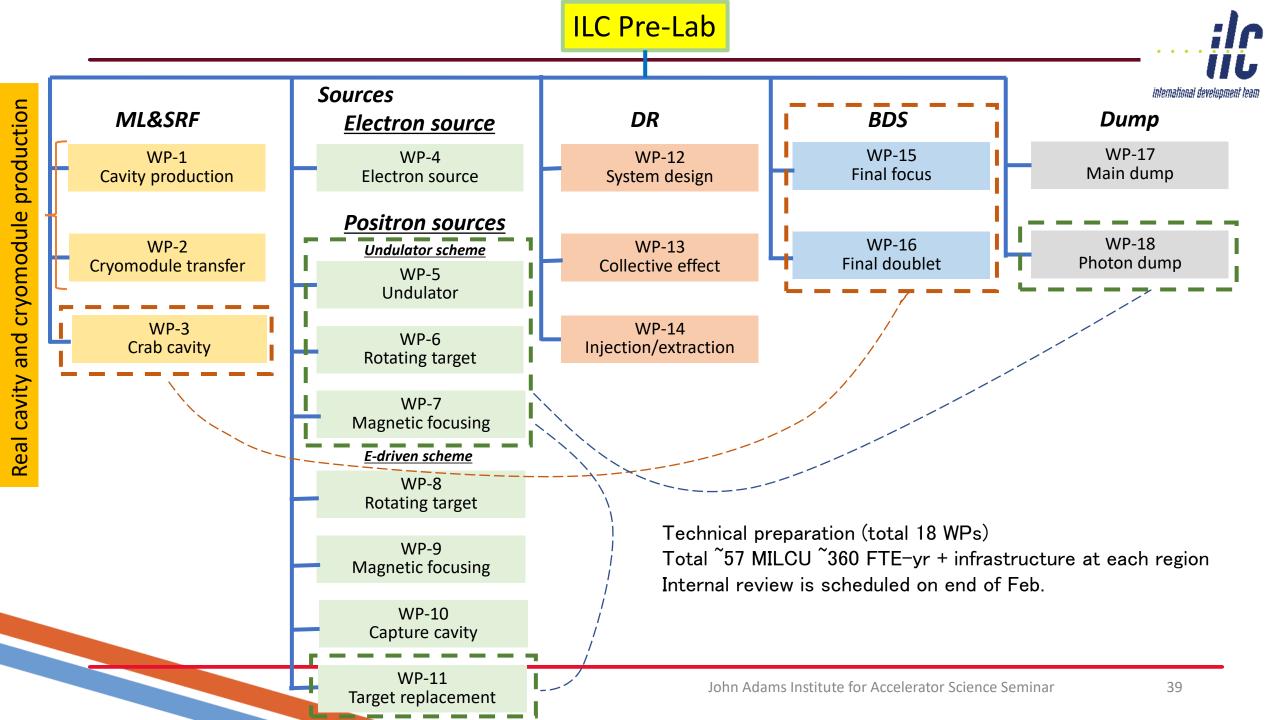
- The next focus will be when ILC Pre-Lab can be started following the IDT.
- The function of the ILC Pre-lab is to do the remaining works in four years.
 - Solve remaining technical issues of the accelerator.
 - Design of the organization and functions of the ILC laboratory
 - and launch the ILC laboratory
- Since the start of the ILC Laboratory is the official start of the ILC project, it is necessary to reach an international agreement including cost sharing before its start. The ILC Pre-Lab also plays an important role in supporting such international negotiations
- KEK is making every possible effort to start the ILC Pre-Lab soon after the IDT completes its mandate, and to realize the ILC together with the Japanese physics community and supporting groups in the political sector, industrial sector and Tohoku region.

M. Yamauchi, AWLC2020

Accelerator activities at ILC Pre-lab phase

• Technical preparations & SRF R&D for cost reduction (Solve the technical concerns by international cooperation)

Have been discussed at IDT-WG2


- Final technical design and documentation (Engineering Design Report, Cost confirmation)
- Preparation and planning of mass production
- Civil engineering, local infrastructure and site

	IDT	I	_C Pr	·e-La	b	ILC Lab.										
	PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.																
Construction																
Civil Eng.																
Building, Utilities																
Acc. Systems																
Installation																
Commissioning																
Physics Exp.																

IDT-WG2 organization

:lr

				1102 0190				· · · · · · · · ·
SRF	ID ⁻ Shin Mich	DT EB T WG2 hizono (Chair) .ist (Deputy)		- preparatio - possible s - internatio	coordinate to preparation on for mass p chedule at P nal sharing c	(remaining topi production at P	cs) at Pre-lab re-lab nese activities	ternational development learn
Yasuchika Yamamoto	KFK	DR/BDS/Dum	p		•			
Sergey Belomestnykh		Toshiyuki Okugi	KEK	Report to th	eIDI-WG2			
Nuria Catalan	CERN	Karsten Buesser	DESY					
Enrico Cenni	CEA	Philip Burrows	U. Oxford	<				
Dimitri Delikaris	CERN	Angeles Faus-Golfe	LAL					
Rongli Geng	JLAB	Andrea Latina	CERN	Dump		Sources	Civil engine	ering
Hitoshi Hayano	КЕК	Kiyoshi Kubo	KEK		Kaonu Vokoua		Nobuhiro Terunuma	KEK
Bob Laxdal	Triumf	Jenny List	DESY	Nobuhiro Tamanan KEK	<i>Kaoru Yokoya</i> Jim Clarke	STFC	John Andrew Osborn	
Matthias Liepe	Cornell	Thomas Markiewicz	SLAC	Terunuma	Steffen Doebe		Tomoyuki Sanuki	U. Tohoku
Peter McIntosh	STFC	Brett Parker	BNL	Toshiyuki Okugi KEK	Joe Grames	JLAB	iomoyaki sanaki	0.10110110
Laura Monaco	INFN Milano	Ivan Podadera	CIEMAT	Chris Densham(STFC)	Hitoshi Hayan			
Olivier Napoly	CEA	David L. Rubin	Cornell	Marco Calviani (CERN) Yu Morikawa (KEK)	Masao Kuriki	U. Hiroshima		
Sam Posen	FNAL	Nikolay Solyak	FNAL	Fernadno Sordo (ESS Bilbad	Benno List	DESY		
Robert Rimmer	JLAB	Nobuhiro Terunuma	a KEK	Peter Sievers (CERN)	Gudrid Moort	-		
Marc C. Ross	SLAC	Glen White	SLAC		Pick	U. Hamburg		
Luis Garcia Tabares	CIEMAT	Kaoru Yokoya	KEK			ievers (CERN)		
Kensei Umemori	KEK	Mikhail Zobov	INFN LNF			Riemann (DESY)		
Hans Weise	DESY	CRAB		Int	n Adams Institute	for Accelerator Science	Seminar	38
Akira Yamamoto	KEK			501				

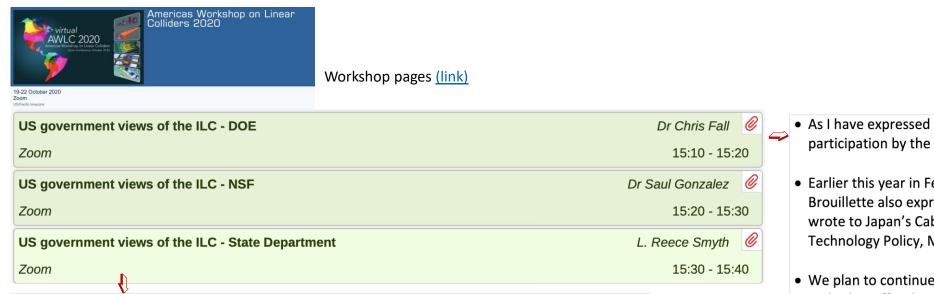
The International Linear Collider

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary

JAHEP ILC Steering Panel



- In October 2020, the Japan High Energy Physics Committee (HEPC) that represents the Japanese high energy physics community (Japan Association of High Energy Physics – JAHEP) established the ILC Steering Panel to accelerate community-wide efforts to realize the ILC.
- The ILC Steering Panel, chaired by Satoru Yamashita, is charged to lead the community to advance the ILC project and actively cooperate with other scientific communities, government authorities, legislators, corporate leaders, regional governments, and media, as well as international communities and authorities, toward timely realization of the ILC in Japan.
- The Panel is expected to work closely with the ILC International Development Team and KEK.

ILC Steering Panel Members :
Shoji Asai (University of Tokyo)
Kazunori Hanagaki (KEK)
Toru Iijima (Nagoya University)
Kiyotomo Kawagoe (Kyushu University)
Sachio Komamiya (Waseda University)
Shinichiro Michizono (KEK)
Toshinori Mori (University of Tokyo)
Hitoshi Murayama (UC Berkeley/University of Tokyo)
Yutaka Ushiroda (KEK)
Hitoshi Yamamoto (Tohoku University/IFIC Valencia)
Satoru Yamashita (University of Tokyo) – Chair

US – Japan on ILC

U.S. Deputy Secretary of State Stephen Biegun sent a letter to Japan's Foreign Minister Motegi in February 2020. It is necessary to take decisive action to ensure that Japan and the United States continue to be at the forefront in particle physics, and I strongly support the progress of the International Linear Collider Program. (Article in the Yomiuri newspaper on May 13, 2020, translation by MY)

We support the decision to move the ILC efforts forward through the ILC International Development Team, and will continue to work to help educate partner governments about the value of this facility. We also look forward to coordinating with the Government of Japan to advance the facility.

- As I have expressed before, there is strong interest in participation by the United States in the ILC program.
- Earlier this year in February, the Secretary of Energy Brouillette also expressed these same thoughts when he wrote to Japan's Cabinet Minister of State for Science and Technology Policy, Mr. Takemoto.
- We plan to continue discussions both bilaterally with MEXT and other officials in the Government of Japan, and multilaterally with the governments of other global regions to not only have a dialogue on the sharing of costs and resources, but also in understanding organizational and governance models for such a largescale research facility as the ILC.

mericas Workshop on Lineaı

ders 2020

- US Labs excited for possibility to leverage experience in mass production of high performance SRF cryomodules for ILC
- LCLS-II provided key experience for Fermilab and JLab

Cryomodule Production for ILC at Fermilab

- · We would be delighted to assemble and test cryomodules for the ILC
- · Now have key experience with mass production of ILC-like cryomodules with LCLS-II and LCLS-II HE · Facilities, staff, knowledge, and
- experience are ILC-ready · Collaborating in this way on international projects is standard at Fermilab - recent examples include LHC, HL-LHC, PIP-II

10/20/2020 Sam Posen I AWLC 2020

AWLC2020, A. Sery

Jefferson Lab

Potential MSU Contribution to ILC

.FRIB SRF team just roll off large production and capable engage large SRF project. Infrastructure is available and support ILC work •FRIB take on portion of cryomodule work is feasible

Fermilal

• Vast knowledge and experience in SRF can be directed towards ILC

SRF cavities at room-temperature Plasma ignited in each cell of a cavity sequentially Oxidation of hydrocarbon surface contaminants creates volatile byproducts pumped out continuously Cleaned surface has increased work

function helping mitigating field emission and multipacting

M. Doleans et al., NIMA 812 (2016) M. Doleans J. Appl. Phys., 120, 243301 (2) 'Tyagi et al., Applied Surface Science 369

Full SRF Infrastructure at MSU for FRIB

elos at the AN

Full cycle - from R&D and prototype to design, construction, operation and

Support NP goals and DOE partner labs programs

AMLC2020, A. Seryi

Possible Vision for US Production Floors late 2020s?

Looking forward to possible new cryomodule decoration in near future!

Please see details from parallel session of the Americas Workshop on Linear Colliders (pictures extracted from summary by S.Posen): link

Jefferson Lat

Americas– summary

- Strong push in the US (all the examples above) at all levels, many labs interested and well aligned towards ILC, and in many cases using significant resources in developments directly relevant for ILC
- Snowmass process important: in addition to collider experiments at ILC also other possibilities, as for example Dark Sector physics at ILC, etc.
- Focus on young/next generation in many sessions (Americas workshop on LC and Snowmass)
- Interests and capabilities in Canada (talks by A.Bellerive and O.Kester) and Latin America (talk by M.Losada)

ILC Pre-Lab US SRF Program Draft

Version: November 9. 2020

Task	Notes	Goal	US Labs	Year 1	Year 2	Year 3	Year
Field emission and cavity cleaning R&D, e.g. HPP and plasma processing on cavities, development of							
robotics during cavity assembly, and LN cleaning		(1) Perf	Cornell, FNAL, JLAB, others?				
	use new cavities from						
Yield study (1) with 30 new 9-cell cavities; cold EP + 2-step bake	established vendor		FNAL, JLAB				
Single cell and 9-cell R&D program to further optimize cavity preparation protocol		(1) Perf	Cornell, FNAL, JLAB, others?				
Yield study (2) with 30 new 9-cell cavities; optimized preparation protocol		(2) Yield	FNAL, JLAB	_			
Module transport engineering design and studies, including dummy module transport		(3) CM	FNAL, JLAB, SLAC				_
Cryomodule optimization for transport		(3) CM	FNAL, JLAB, SLAC				
Cavity accessory components R&D (e.g., tuner, coupler), e.g. for higher gradients		(3) CM	Cornell, FNAL, JLAB, others?				
Order/fab components for 4 prototype cryomodules		(3) CM	FNAL, JLAB				
Assembly and testing of two prototype cryomodules, with cavities from yield study (1)		(3) CM	FNAL, JLAB				
Field emission studies, including HPP and plasma processing on cryomodules		(3) CM	FNAL, JLAB				
Cryomodule transportation testing (US roundtrips)		(3) CM	FNAL, JLAB				
	cavities used from yield study (1) would have to be compliant with Japanese HPG	(2)					
Cryomodule transportation testing (ship to Japan)	regulation	(3) CM	FNAL, JLAB				
Assembly and testing of two prototype cryomodules, with cavities from yield study (2); implement							
field emission prevention methods during assembly, e.g. robotics in collaboration with CEA		(3) CM	FNAL, JLAB				
Engineering Design Report (SRF part)		EDR	All				
		Planning and					
Preparation for mass production / module assembly		preparation	FNAL, JLAB, others?				
		Planning and					
US supply chain development		preparation	FNAL, JLAB, others?				

Potential areas of Canadian Contribution to ILC via TRIUMF

- SRF/RF (crab (or other) cavities, cryomodules, rf ancillaries)
 SRF research on break-down fields and effect of doping
- HV kickers, beam painting magnets and Rf bunch deflectors
- Beam physics (space charge dominated beam, Hamiltonian based fast envelope code, machine learning)
- High brightness electron gun
- e-beam diagnostics
- Normal conducting magnets (also permanent magnet optics for e-beam lines)

Europe and ILC

Homework done in 2018: <u>European planning document 2018</u> – presented to CERN Council in June 2018

(slightly more was done than showed in the document concerning in-kind and resource profiles)

Focus on European capabilities for ILC (e.g. SFR on the right)

in t	eparation Plan for European Participation the International Linear Collider ards a European Contribution to the ILC	J	luly	/ 2	, 2	018
Aut	hors: Philip Bambade (LAL Orsay) Philip Burrows (Oxford) Angeles Faus-Golfe (IFIC-Valencia and LAL) Brian Foster (DESY) Andrea Jeremie (LAPP Annecy) Benno List (DESY) Olivier Napoly (CEA-Saclay) Thomas Schörner-Sadenius (DESY) Marcel Stanitzki (DESY) Steinar Stapnes (CERN) Nick Walker (DESY) Hans Weise (DESY)					
Co	ntent					
Ex	ecutive Summary					2
1 I	Introduction					3
2 F	Past European contributions to the ILC and current activities within Europe .					6
3 F	Preparation phase for the ILC construction 2019–2022					14
4 E	European in-kind contribution to the ILC construction.					20
5 F	Possible involvement forms of Europe					21
6 F	References					23
7 (Glossary					24

	Germany	Fran	ice	Italy		Poland	Russia	Spain	
	DESY	CEA Saclay	LAL	INFN Milan	IFJ PAN	WUT	NCBJ	BINP	CIEMAT
Linac									
Cryomodules	~	~		√					
SCRF Cavities	~			√					
Power Couplers	~		~						
HOM Couplers							1		
Frequency Tuners	~								
Cold Vacuum	~							√	
Cavity String Assembly	1	✓							
SC Magnets	~				1				1
Infrastructure									
AMTF	√				1	1		√	
Cryogenics	~								
Sites & Buildings									
AMTF hall	~								

Table 2: Responsibility matrix for cryomodule production and testing for the European XFEL.

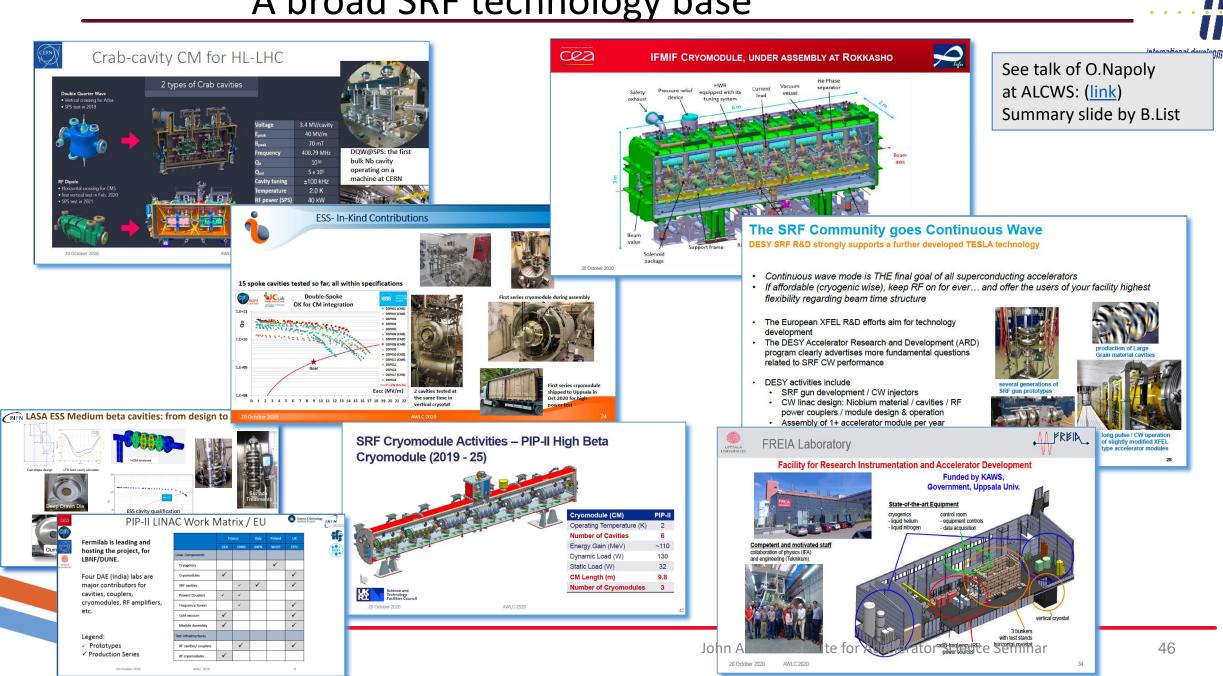

	Germany	Fra	ince	l	taly	Poland	Spain	Sw	Sweden	
	DESY	CEA	IPNO	Elettra	INFN-LASA	IFJ-PAN	ESS Bilbao	ESS	Uppsala	STFC
RF systems				✓			✓	√		
LLRF									√	
Cryomodules		√	1							
SCRF Cavities		√	✓		√					~
Power Couplers		√	✓							
HOM couplers										
Frequency Tuners		√	1							
Cold Vacuum		√	✓					√		
Cavity String Assembly		√	✓							
RF Tests (Cavites)	✓									~
RF Tests (Cryomodules)		✓	1			✓		√	✓	

Table 3: Responsibility matrix for the cryomodule production and testing for the ESS.

John Adams

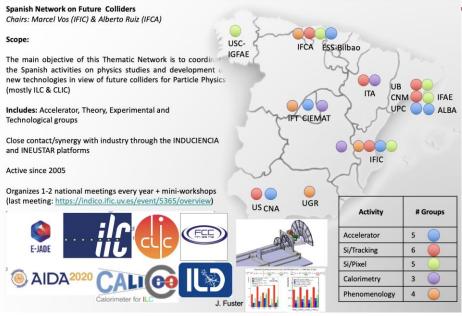
A broad SRF technology base

UK – renewed engagement in view of Pre-lab planning

Linear Collider UK (LCUK) Collaboration Contacts: Philip Burrows, Aidan Robson

Long standing Consortium of UK particle physics experiment, theory and accelerator groups with interests in a linear collider.

- Previous strong UK research council support for ILC R&D projects, but only very modest support since 2013
- Strong joint CERN/UK CLIC programme 2011-20 ('CLIC-UK')
- Detector R&D largely pursued via CALICE, AIDA2020 ... main UK technical interests in silicon vertex/tracking, calorimetry, DAQ/trigger
- Synergies with CLIC, FCCee, CEPC in both detector + accelerator systems remain important


Updates:

- STFC engaged and informed on ILC, UK Tokyo Embassy following ILC developments closely
- LCUK community planning meeting on ILC 18/9/20: <u>https://indico.cern.ch/event/943948/</u>
- UK physicists are engaging with IDT WGs
- UK PP roadmap update (in light of EPPSU) → Spring 2021
 - LCUK input (16/10/20): 'UK participation in the International Linear Collider'
 - Outline case made for UK contributions to Pre-lab + Construction phases (see matrix on the right of key "capabilities")
- Engagement with UK industry ongoing \rightarrow 'in-kind' contributions essential

Technical system		Å	Accelerator				Detector		Physics
Institute			-						
	BDS/MDI	DR	Beam dumps	e+ source	RF	Si tracker	Calorimetry	DAQ	
Birmingham	X					Х	X		X
Bristol						Х		X	X
Brunel						X		X	X
Cambridge							X		X
STFC – Daresbury Laboratory	X			X	Х				
Durham IPPP									X
Edinburgh						Х			X
Glasgow						Х			X
Imperial College							X	X	X
Lancaster				X	Х	X			X
Liverpool		X				X			X
Manchester	X				Х	Х			X
Open University						Х			
Oxford	X	X			Х	X		X	X
QMUL						X			X
STFC – RAL			X			X	X	X	X
RHUL	X							X	X
Sheffield						Х			X
Southampton									X
Sussex							Х	X	X
UCL	X						Х	X	X
Warwick						Х			X

<u>Spain – consider deliverables</u> from labs and industry, linking to industrial programmes

Japanese-Spanish regular meetings for ILC planning and possible contributions

- Documentation of Scientific and Technology case of the ILC, as well as Industrial Opportunities
- On-going discussion on possible Spanish technological/industrial interests to the ILC accelerator.

CIEMAT/IFIC: exploring a possible contribution to the splitable, super-conducting magnets of the main LINAC **ALBA-synchrotron:** interest in the design of parts of the ILC damping ring, ESS-Bilbao: interest expressed in the beam dump system of the ILC

INDUCIENCIA/INEUSTAR: identifying companies with interest/capacity to contribute to the construction and matching with scientific and technological interest of the public institutes

Network meetings being followed by: Steinar Stapnes (CERN), Nobuhiro Terunuma (KEK), Akira Yamamoto (CERN/KEK), Hitoshi Yamamoto (Tohoku University /IFIC)

CERN – KEK agreement for the ILC IDT

- CERN will facilitate the European participation in the work during the transition to the Pre-Lab Phase; including working groups on Pre-Lab preparation, accelerator and facility, and physics and detectors.
- CERN will coordinate the European contributions to the IDT's common fund, as well as the in-kind contributions to the tasks supported by the common fund during the preparation of the Pre-Lab Phase. The CERN office at KEK (set up under Appendix 10) will, as one of its tasks, provide administrative support to the European efforts related to transition to the Pre-Lab Phase.
- The Parties will continue, or, as the case may be, undertake, collaborative work in studies related to:
 - the accelerator's beam-delivery system and the Accelerator Test Facility 2 (ATF2) (as set out in the 2009 Agreement on Collaborative Work and Appendix 13);
 - high gradient acceleration for linear colliders;
 - high efficiency klystrons (as set out in Appendix 23);
 - detector, physics and software (as set out in Appendix 8);
 - cryogenics systems, beam-dumps, superconducting radiofrequency (SC RF) module components and technologies, civil engineering (all areas where CERN has provided technical advice as part of the LCC collaboration); and
 - other areas of common interest (e.g.: positron production and beamdynamics) and/or information exchange related to common challenges (e.g.: costing methodology and power reduction studies).
- Any existing collaborative work referred to above will continue to be executed under its relevant Appendix.

APPENDIX 24

to

The Agreement on Collaborative Work (ICA-JP-0103)

between

THE HIGH-ENERGY ACCELERATOR RESEARCH ORGANIZATION (KEK)

and

THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

concerning

The work of the ILC International Development Team to facilitate the transition into the "Pre-Lab Phase"

2020

The International Linear Collider

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- Civil engineering
- International Development Team (IDT)
- Global situation
- Summary

Summary

- ILC250 accelerator is 20 km long e-/e+ collider for the Higgs factory.
- The ILC is upgradable in energy and luminosity.
- *Key technologies at the ILC are superconducting rf (SRF) and nano-beam.*
 - *SRF* technology has been widely adopted at XFELs such as European XFEL.
 - Nano-beam technology has been demonstrated at ATF hosted by KEK
- Tunnel design and civil overview are shown.
- We assume 4-year preparation and 9-year construction.(now we are at pre-preparation phase (IDT))
- Preparation phase activities are
 - Technical preparation
 - Final engineering design
 - Planning and preparation of Hub lab.
 - Human resources for ILC construction ...
 - Global collaboration started.

Thank you for your attention