Second Look at Performance of TestEm3 in AdePT

Jonas Hahnfeld

April 20, 2021

1/10

Recap: Performance of TestEm3

» TestEm3:

» Simplified sampling calorimeter, 50 layers (2.3 mm PbWO, + 5.7 mm IAr)
» No magnetic field; 10,000 electrons of 10 GeV

» System: AMD Ryzen 9 3900 (12C/24T), GeForce RTX 2070 SUPER

» GEANT4-10.7.1 (1 thread): 497 seconds (G4HepEm: 489s)
» AdePT (GPU): 115 seconds (default batch size of 26 particles)

» GEANT4-10.7.1 (24 threads): 43 seconds (G4HepEm: 435)

2/10

Random number generator

» Profiling points to RNG
» More concretely: advancing RNG state for secondaries
Before apt-sim/AdePT#114
// Initialize a new PRNG state.

this—rngState = parent.rngState;
this—rngState . Skip (1 << 15);

3/10

https://github.com/apt-sim/AdePT/pull/114

Branching the RNG state

Input: state A
. o Output: state B for the secondary

/1 k\
// @ \\
S XOR N 0. Remember the state A
E A . 1. Advance to state A’
Advance

2. XOR bits in A and A’ to get B

Run time for 10,000 electrons: 115s — 36.7s (3.1x)

4/10

Internals of RANLUX-++

» LCG with 576 bits of state

» Expensive operation: advancing the state
» Then: 11 doubles “for free”

> Before: threads advanced state when all bits used up

» Could happen at various places during physics
> A few threads would advance their state, all others had to wait

> Now: advanced original and branched state offer 11 doubles “for free"
> Less (if any) expensive operations during physics

5/10

More Optimizations: Reuse state of killed primary particle

ol ~ " X = //’ ‘\\

» Avoids one branching operation for annihilation and conversion
» Run time for 10,000 electrons: 36.7s — 35.6s

6/10

More Optimizations: Reduce thread divergence

» Result: Need at most one branched RNG state

= Move operation before starting discrete interaction

» Threads still synchronized before switch statement
» Run time for 10,000 electrons: 35.6s — 33.7s

Taken together, another improvement of around 8 %
(via apt-sim/AdePT#117, compared to slide 4)

7/10

https://github.com/apt-sim/AdePT/pull/117

More Profiling: Geometry again

|75 ms

Ssq ms 560. 2‘5 ms. 550§ ms 560. ZS ms 551‘ ms 561. 2‘5 ms 561. § ms 561 ZS ms 552‘ ms
[=| Streams
* Default ‘
- strean 13 u Transporete.. [} [Transportiec.. |7}
* Stream 14 s | [} [}] TransportPositrons (Track*...]
- Stream 15

P— I I I I

» Transport kernels are much faster compared to last presentation
» Now bound by relocation for gammas, even for this simple geometry

1. Avoid virtual calls: 26.8s (-20 %, see apt-sim/AdePT#106)
2. Without separate kernel: 20.7s (-38.5%) — only for this particular case

8/10

https://github.com/apt-sim/AdePT/pull/117

Turning on a Magnetic Field

2155 21755 225 22255 2255 22755

=) Streams
- Default
© Stream 13
© Stream 14
* Stream 15
* Stream 16

| |
I IR R RO OUPRUEOUPCEETEUEREEEDLEEDEEOEDEREE]DETDEE DD 000 A M A I

ORI RVOREEUEOOTLOTODLTLT0RODLTL0EEE 0 0E 0D REEREE 000 TR A A TN IIITII

» Wait for looping particles, until hitting 1000 iterations

» Need to detect these cases and deposit energy
> Preferably not per particle on the GPU, but on the CPU
» Example heuristic:

1. No gammas, only charged particles (e /e™)
2. No change in number of tracked particles for 200 steps

9/10

Conclusion

» Optimized performance of TestEm3 on GPU by a factor of 3.4x

> Now faster than GEANT4: 33.7s vs 43s !
»> But: GEANT4 computes safety, not included on the GPU (needed for MSC)

> Next steps:

> Profile execution with realistic calorimeters (ATLAS / CMS)
» Study energy distribution of particles entering the calorimeter

10/10

