CPU benchmarking
and SIMD vectorization

A few preliminary ideas

Andrea Valassi (IT-SC-RD)

HEP-SCORE Deployment Task Force meeting, 6" June 2021
https://indico.cern.ch/event/1030673/

EE/RW A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

https://indico.cern.ch/event/1030673/

Disclaimer

Not an expert: only started coding vectorized code less than one year ago
— Madgraph event generator: https://doi.org/10.5281/zenodo.4785174

Not much time to prepare this talk or discuss it with others yet — sorry

No detailed discussion yet on vectorization in the benchmarking WG
—...only few HEP software workloads exploit CPU vectorization today...

Just a few points for discussion, essentially...
— NB: these are my personal opinions/suggestions, not those of LHCb

Many thanks to Sebastien Ponce, Marco Clemencic, Hadrien Grasland for their help with SIMD development

EE/RW A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

<7/

https://doi.org/10.5281/zenodo.4785174

Vectorization — the hardware view: SIMD ”

[
>
]

SIMD: Single Instruction Multiple Data
— The ability of a processor to execute several operations in a single instruction
—e.g. A1+B1=C1, ... A4+B4=C4 vs. A[1...4]+B[1...4]=C][1...4] — 4 cycles vs 1 cycle >

p—
o
U sl &
bt

Simplifying: two main ingredients
— Vector registers storing multiple data

r—
1l
g
E—

_
[*S)
:
o
—

— Instruction set supporting vector operations on those registers Time
I A1l ‘ A2 ‘ A3 ‘ Ad I Ad
« There are several sets of advanced vector extensions, e.g. [o [o [o [= || [
— SSE4.2: 128-bit wide xmm registers (2 doubles, 4 floats) peren peeeapeeypesen I || e

— AVX2: 256-bit wide ymm registers (4 doubles, 8 floats)
— AVX512: 512-bit wide zmm registers (8 doubles, 16 floats)
— In theory, a speedup (or throughput increase) by up to 16x is possible...

Different processors support different levels of SIMD (check /proc/cpuinfo)
— Should we benchmark this? Should a system have a higher score because of its SIMD?

NB: this is orthogonal to the multi-core speedup (multi-processing, multi-threading)

ﬁw A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

Vectorization — the software view: data parallelism (lockstep)

« Exploiting SIMD requires computational workflows with excellent data parallelism

— Compute the same function on multiple data at the same time (in lockstep)
* And there must be little serial code outside this kernel (Amdahl’s law...)
— A similar challenge exists for GPU software programming

« Coding to exploit SIMD on CPUs is hard (harder than coding for GPUS)
— The wrong memory layout may be a blocker (Array-of-Structure vs Structure-of-Array)

« As a consequence, CPU SIMD is heavily under-exploited in HEP workloads today
— SIM (detector simulation): very hard to exploit because of stochastic branching
— RECO (event reconstruction): a lot of WIP (e.g. in LHCDb), not yet highly visible effects
— GEN (event generation): just starting, good potential (IMO)
— Analysis: good exploitation in some packages (IIUC) — but not in HEP-workloads
— In my understanding, there is little vectorization in our HEP-score candidates

NB: achieving a multi-core speedup is much easier
— In the worst case (and if you have enough RAM), you just run one ST application per core
— This is exactly what we do to benchmark systems in HEP-workloads and HEP-score

ﬁw A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

N

CPU throughPUt I‘ESU"ZS (2) Implementation MEs / second
Double, C++ — Scalar vs SIMD =l Latbl
1-core MadEvent Fortran 1.50E6
SIMD: I d f . . scalar (x1.15)
rexce entsp_ee up from vectonzgnon PP ———— T
— NB: only measuring the parallel calculation scalar (x1.00)
— Lower overall speedup (Amdahl's law...) 1-core Standalone Cit y oEe
128-bit SSE4.2 x1.9)
* Best throughput: AVX512 limited to 256-bit width (x2 doubles) '
— x3.7 over scalar C++ (vs x4 theoretical maximum) 1-core Standalone C++ 45866
» Estimate a x3.3 speedup over scalar Fortran 25‘?';“ t‘;"xz (x3.5)
— Thanks to Sebastien Ponce for the suggestion! (x4 doubles)
1-core Standalone C++ 4.91E6
. . : o “256-bit” AVX512 :
» Disappointing: AVX512 with 512-bit width (x4 éoumes) (1/3-7)
— Slower t_han AVX2, why? Slovaer cloclj:, what else? 1-core Standalone C++ ﬁ a
— Can be improved? x8 theoretical maximum... 512-bit AVX512 :

(x2.9)

(x8 doubles)

#Symbolsin.0 | ggE42 | AVX2 | AVX512 | AVX512

Build type (xmm) | (ymm) | (ymm) [(zmm)
Scalar 614 0 0 0
SSE4.2 3274 0 0 0
AVX2 0 2746 0 0 L » A few AVX512VL symbols yield a 7% improvement over pure AVX2
256-bit AVX512 0 2572 0
- Degree of vectorization checked by disassembling (objdump)
512-bit AVX512 0 1127 205 2045 Custom categorization of symbols

VCHEP — 19 May 2021 17

EE/RW A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

CPU throughPUt I‘ESU"S (3) Implementation MEs / second MEs / second
C++, SIMD - Double vs Float (e*e—pp) Double Float
1-core MadEvent Fortran 1.50E6
scalar (x1.15)

1-core Standalone C++ 1.31E6 1.21E6
scalar (x1.00) (x0.92) [x1.00]

1-core Standalone C++
128-bit SSE4.2
(x2 doubles, x4 floats)

2.52E6 4.50E6
(x1.9) (x3.4) [x3.7]

1-core Standalone C++
256-bit AVX2
(x4 doubles, x8 floats)

4.58E6 8.17E6
(x3.5) (x6.2) [X6.8]

1-core Standalone C++
“256-bit” AVX512
(x4 doubles, x8 floats)

4.91E6 8.84E6
(x3.7) (x6.7) [x7.3]
» Scalar: float slower than double

—To be understood (8% effect) f-core Standalone C-++ 3.74E6 7.42E6

512-bit AVX512
(x8 doubles, x16 floats) (x2.9) (x3.7) [x6.1]

» SIMD: float ~ x2 better than double!

— Execute 2 as many vector instructions
— Best throughput: 256-bit AVX512 (x7.3 speedup against x8 theoretical maximum)

* s single precision enough for physics? Can we improve numerical stability?
— Observed a few NaN every million MEs when using single precision
— Using fast math (~x2 speedup) also requires excellent control of numerical stability

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs vCHEP — 19 May 2021 18

EE/RW A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

Vectorization — compilation flags and builds

Most of the “usual” compiler flags affect all systems in “similar” ways
— Example: -O3 is an optimization producing code valid for all platforms
— (Counter-)Example: -m64 produces code valid for all 64bit platforms (ALL modern ones!)

Compiler flags for vectorization are special — they are architecture-specific
— Example: -march=haswell (SSE4), -march=nehalem (AVX2), -march=skylake-avx512
— If you run code compiled for AVX512 on a CPU that does not support it, it will crash

The experiments generally have separate builds for different SIMD levels?

— This is certainly true at least in LHCDb: “x86_64+avx2+fma-centos7-gcc9-opt”
« Eventually move to microarchitecture feature levels (e.g. x86-64, x86-64-v1 etc...)?

— To my knowledge, none of the current HEP-score candidate workloads uses a SIMD build

Alternative: “fat” binaries, supporting multiple SIMD levels with an internal trampoline
— It is easy to determine from the code itself which SIMD features a host system supports

Two options for future containers of vectorized HEP software workloads?
— Embed several builds in one container, choose “best” SIMD level in the calling bash script
— Embed a single “fat” executable, let it choose the “best” SIMD level
—In any case: measure and record scores for several SIMD levels (not only the “best” one)

ﬁw A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

https://www.phoronix.com/scan.php?page=news_item&px=GCC-11-x86-64-Feature-Levels

Benchmarking — a problem with many degrees of freedom (1)

« A gedanken experiment — in theory, very peculiar situations are possible
— Suppose system A supports no SIMD, while system B supports AVX2

— Suppose workload W1 uses no SIMD, while workloads W2 and W3 can be highly vectorized
» Scores from W1 are al and b1, with bl/al =c (i.e. B/A =)
» Scores from W2 (W3) in scalar mode are a2 (a3) and b2 (b3), with b2/a2 ~ b3/a3 ~ c (i.e. B/A ~ ¢)
 Scores from W2 with vectorization are a2 and 4x b2 (i.e. B/A ~ 4c!) — AVX2 fits 4 doubles
» Scores from W3 with vectorization are a3 and 8x b3 (i.e. B/A ~ 8c!) — AVX2 fits 8 floats

— Workloads W2 and W3 dramatically prefer system B, as only system B provides SIMD...
— Should we benchmark B/A as c? or as 4c? or as 8c?...

» The situation is currently very unlikely (... but things may change?...)
— There is not a large spread of SIMD capabilities in WLCG (most are AVX2? some SSE4?)

— We do not have HEP software workloads with such high benefits from SIMD
* And even if we had, their relative weight in the HEP-score average would be small

Nevertheless: “Both the press and the customer must be informed about the danger

and the folly of relying on either a single performance number or a single benchmark”
[Kaivalya Dixit, former president of the SPEC corporation]

A single number (HEP-Score) is what we want, and for good reasons — but we should be careful!

ﬁw A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

https://jimgray.azurewebsites.net/BenchmarkHandbook/chapter9.pdf

Benchmarking — a problem with many degrees of freedom (2)
A glimpse at GPUs

* Not related to SIMD vectorization — but still related to float vs double

 Floating-point operations handled by different units for float (FP32) and double (FP64)
— Typically: ratio of FP32 to FP64 units is 2 for data center products, 32 for consumer cards!
— This is why GPU specs typically report TWO numbers: float Flops and double Flops...

GPU throughput results (2)
CUDA — Double vs Float il MEs /second | MEs second
(and NVidia V100 vs T4)

1-core MadEvent Fortran 1.50E6

scalar (x1.15)
1-core Standalone C++ 1.31E6 1.21E6
« V100: float ~ x2.2 better than double! scalar (x1.00) (x0.92)
— Similar to CPU SIMD, different reasons 1-core Standalone C++ 2 59E6 4 50E6
— V100 Flops (&cores): FP32 = 2x FP64 128-bit SSE4.2 (x1.9) (x3.4)

— Fewer registers: float=48, double=120 (x2idounles pclifioats)

1-core Standalone C++

256-bit AVX2 4.58E6 8.17E6

« T4: very limited double performance (x4 doubles, x8 floats) (ki) (x6.2)
-T4 FIOpS: FP32 = 32x FP64 1-core Standalone C++
] b - 4.91E6 8.84E6
—May be even worse in consumer cards 256-bit” AVX512 (x3.7) (6.7)
(x4 doubles, x8 floats) : :
1-core Standalone C++
512-bit AVX512 3;:24 5;5 7(:'525;5
(x8 doubles, x16 floats) ’)
Standalone CUDA
NVidia V100S-PCIE-32GB 7,'(2555%8 ;‘fgoE;’
TFlops™: 7.1 FP64, 14.1 FP32) (E3510) ()
S'a"r‘js'.g‘eﬁum 3.21E7 6.52E8
'dia (x25) (x500)

‘TFIops‘: 0.25 FP64, 8.1 FP32)

* hitps //www techpowerup.com/gpL

403316
https:/ r100-pcie-32-gb.c3184

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs vCHEP — 19 May 2021 20

EE/RW A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021

~7 -

Conclusions

In theory, vectorization could dramatically alter a system CPU benchmark
— Throughput ratios of two systems may vary by factors for vectorized software workloads

In practice, this is not a problem for HEP software workloads on WLCG today?
— HEP software is largely not vectorized, WLCG hardware is relatively uniform?

Reminder: choosing a single-number benchmark is hard (will be worse for GPUs!)
— Multi-dimensional problem: vectorization is a typical example, but not the only one...

Suggestions for the current HEP-score candidate?
— Use the software workloads as the experiments have already packaged them
— LHCDb (GEN-SIM) is certainly not vectorized
— | assume the others are also not vectorized? (or internally choose/assume a SIMD level?)

Suggestions for future HEP-score versions? (When there are vectorized workloads!)
— Allow each container to run different SIMD builds (different executables or a “fat” binary)
— Measure/store different vectorization scores for each workload for different SIMD levels
— On a specific system, let each workload choose the SIMD level it prefers
— Aside — we should clarify the SIMD capabilities of the hardware we already have in WLCG?

EM A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021 10

<7/

Backup slides

EE/RW A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021 11

~7 -

Main design idea: event-level data parallelism (lockstep)

In MC generators, all events in one channel initially go through the same calculations
— Computing MEs involves the calculation of the exact same function on different data points
— This is what makes event generators a good fit for GPUs (SIMT) and vector CPUs (SIMD)

B1
PSEUDO RANDOM A1+t

vergen Time NUMBERS
6% 4 (1111 111] =

- PHASE SPACE i
no divergence SAMPLING 2

+ optional event cuts
will need to repack data once)

See the NVidia Volta whitepaper

4
il |E
SWZ [SIMT CPU C==-|
v SIMD C =]
/ \ e

GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)

Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

(A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs vCHEP — 19 May 2021 10

7

EM A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021 12

~7 -

LA ROULETTE DE MONTE-CARLO
Régle du Jeu

Aside — Monte Carlo’s: what about branching?

ol

* Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

* From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING MC DECISIONS
(within one channel) | INPUT .@ INPUT
Physics generators:
Physics generators: - MC sampling channel
- MC integration DECISION - MC unweighting
(cross sections) L 5 (accept/reject)
- MC generation - Parton showers (PS)
(event samples) y - Fragmentation
OUTPUT OUTPUT - Particle decays (to what?)
Lockstep processing Stochastic branching MC detector simulation
Good for SIMT/SIMD Bad for SIMT/SIMD - Particle/matter interaction
NB: the CPU-intensive ME calculation comes (when? how?)
before PS, fragmentation, detector simulation - Particle decays (when?)

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs vCHEP - 19 May 2021 11

ﬁw A. Valassi — LHCb benchmarks HEP-SCORE Task Force Meeting — 06 Jun 2021 13

~7 -

