
MC RF WG Sammary

A. Grudiev, J.P. Delahaye, D. Li, A. Yamamoto for the RF WG 21/05/2021 1st Muon Community Meeting

Muon Colliders and RF systems

Proton driven Muon Collider Concept (MAP collaboration)

	System			Driver			Front-End Cooling					Acceleratio	2	Collider	TOTAL	CLIC
				Driver Linac H-		A							Conider	TOTAL	Acceleratio	
	Sub-			(SPL like) F.Gerigk			Capture& Bunching	Initial	6D (2 lines)	Final (2 lines)	Injector			Ring	IMC	
	system					-		C Decere			Linac (2stages) (A.Bogacz					n
Reference expert			r.Gerigk		?	D.Neuffer	C.Rogers	D.Stratakis	C.Rogers	А.БС	ogacz	S.Berg	E.Gianfeli	e		
Summary of		Energy		0.16	5	5	0.255	0.255	0.255	0.255	1.25	62.5	1500	1500		1500
PE cyctom		# bunches (μ+ or μ-)	#	40 mA		1	12	12	1	1	1	1	1	1		312
RF system		Charge/bunch	E12			500	3.57	2.56	7.21	4.39	3.73	3.17	2.22	2.20		3.72E-03
naramotors	Beam	Rep Freq	Hz	5	5	5	5	5	5	5	5	5	5	5		50
parameters	(system exit)	Norm Transv Emitt	rad-m				1.5E-02	3.0E-03	8.3E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05		660/20E-06
by		Beam dimens. (H/V) in RF	mm	?	?	?	?	?	?	?	?	?	?	?		1?
ыy		Norm Long Emitt	rad-m				4.5E-02	2.4E-02	1.8E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03		
JP. Delahaye		Pulse/Bunch length	m		ms	0.6 (2ns)	1.1E+01	1.1E+01	9.2E-02	9.2E-02	4.6E-02	2.3E-02	2.3E-02	5.0E-03		4.4E-05
JI. Delallaye		Power (μ+ and μ-)	W	6.40E+04	2.2E+06	2.0E+06	1.8E+04	1.3E+04	3.0E+03	1.8E+03	7.6E+03	3.2E+05	5.4E+06	5.3E+06		2.8E+07
		Technology		NC Linac4	SC	SC	NC	NC	NC Vacuum	NC	SC	SC	SC	SC		NC High Grad
		Number of cavities	#	23	244	2	120	367	7182	32	52	360	2694	?	11076	149000
		RF length	m	46	237	1	30	105	1274	151	82	1364	2802	?	6092	30000
		Frf	MHz	352	704	44	326to493	325	325-650	20-325	325	650-1300	1300	800	4 to 1300	12000
	RF	Grf	MV/m	1-3.7	19 - 25	2	20	20 to 25	19-28.5	7.2-25.5	20	25 to 38	35	?	1 to 38	100
	cavities	Aperture	mm	28	80		?	?	?	?	300	150	75	120	28 to 300	2.75
	RF power sources	Magnetic Field	Т	0	0		2	3Т	1.7-9.6	1.5-4	0	0	0	0	0 to 9.6	0
		Installed RF field	MV	169	5700	4	434	2618	30447	1836	1640	50844	98062	250	1.92E+05	3.00E+06
		Beam Energy gain	MeV	160	4840	0	0	0	0	0	1250	62500	1437000	0	1.51E+06	1.50E+06
		Recirculations	#	1	1		1	1	1	1	1	4.5 to 5	13 to 23	1000	1 to 1000	1
		RF Power/pulse (η=0.6)	MW	25	220	3.E-01	99	429	1172	43	52	360	2024	1.98E-02	4425	1.2E+07
		Technology		klystron	klystron						Klytro	on-IOT				Two Beam
		Cavities/Power Source	#	23	244		4				1 to 2	1 to 2				2
		RF Pulse (fill+beam) estim.	ms	2.20	2.20	3.20	1.00E-01	1.00E-01	1.00E-01	1.00E-01	3.00E-02	5.90E-02	7.25E-01	1.48E+01		1.42E-01
		Prf/Power Source	MW	11.7	1.93						1	1				15
		Total Power Sources	#	17	244		30				52	341			?	1638
		Installed Peak RF Power	MW	34	275		164	515	1407	52	52	341	2429	2.38E-02	5269	2.46E+04
		Average RF power (η=0.6)	MW	0.27	2.13	0.01	0.05	0.21	0.59	0.02	0.01	0.11	14.88	0.00	18.28	143
		Wall plug power (η=0.6)	MW	0.45	3.55	0.01	0.08	0.36	0.98	0.04	0.01	0.18	24.81	0.00	30.46	289

Muon capture and cooling

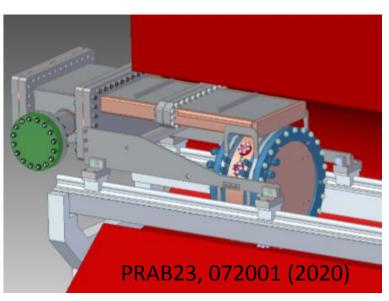
RF system parameters and challenges

- Complex normal conducting RF (NRF) system with many independently controlled cavities at many different frequencies in the ranges from 20 to 650 MHz
- Majority of the cavities operate at two main frequencies: 325 and 650 MHz at high gradient in strong magnetic field.
- Challenges (NRF):
 - Low frequency (large cavity): 325 650 MHz,
 High gradient: 25 30 MV/m,
 Strong magnetic field: 5 10 T
 High peak current before bunch merge: 3.6E12 μ @325MHz => 187 A
 Large bunch charge after bunch merge: 7.3E12 μ => 1168nC
 Large beam aperture/window:
 - High level of beam losses and decay radiation
- Technology is far from being common, the closest examples:
 - Positron capture RF cavity: high frequency, high gradient in not so strong magnetic field

Open points to discuss with MPC WG

- Frequency choice: would we stay at 325, 650 MHz (TESLA) or move to 352, 704 MHz (LEP)? Or something different?
- **Higher gradient:** How do we profit from the higher gradient reached in some test cavities (50 MV/m) compared to current baseline?
- **Gas versus Vacuum:** Are there any non-RF pro and contra arguments? When do we have to finalize the choice?
- Beam aperture/window size:
- Many frequencies in buncher/rotator.

NRF cavities for muon cooling: State-of-the-art


MICE 200 MHz RF module prototype: Nominal: 2.5 T, 17 MV/m Achieved: 0 T, **19 MV/m**; 0.75 T stray field, **14 MV/m**

800 MHz **Gas** filled RF cavity: Small gap, 3T, **>50 MV/m**

Gas-filled rf Test Cell Toroid current transformer Scintillating screen rf power coupler H₂ gas 200 mm-\$4 mm Collimator hole 400 MeV proton beam rf pickup loop $E_0(r)$ 10- 10^{-2} 10^{-3} 100 mm 2 5 10 20 r (mm) PRAB19, 062004 (2016)

800 MHz **beryllium** RF cavity: 3T, **>50 MV/m**, 30us@10Hz

Gas filled cavity cool thin Be window Also neutralize space charge

Critical issues and R&D on NRF

- Gap between performance of the prototype and the test cavities
- **High gradient** in strong magnetic field. Alternative materials, temperatures, pulse shapes
- Gas filled cavities suffer from loading by ionization from the beam
- Cavity walls and beam window from Beryllium ? (Safety)
- **RF power source**: Existing commercial RF power sources are by design operate at lower peak power but higher average power then we need for muon collider. This is driven by current applications
- Engineering design: RF, SC magnet, cryogenics, etc
- Collective effects: beam loading, single and multi bunch
- High gradient operation in high **radiation** environment

R&D roadmap proposal NRF: Scenario 1, minimum program

- Assumption: High gradient testing is possible only after MCTF is approved. No resource for a dedicated RF test stand in addition to the MCTF
- Over the next 5 year: Design study only. Conceptual and technical design of cavity prototype(s) and RF system for the MCTF
 - Based on the input from MC WG for the MCTF : frequency, gradient, B-field, aperture;
 - Based on the existing test results;
 - Make design choice for the MCTF cavity
 - Integration of cavity prototype in the muon cooling unit
- Over the next 10 year: Fabrication and testing.
 - Fabrication of MCTF cavity prototypes
 - Using the first cooling unit for prototype testing before the MCTF facility is fully build.
 - Depending on the prototype performance make one design iteration for the collider CDR

• Pro:

• Minimum R&D resources. (This is short term advantage)

• Contra:

- No dedicated R&D is possible (or it is extremely limited)
- Testing parameters are limited to the nominal one for the MCTF
- Risk of not demonstrating nominal performance required for the MCTF
- Strong impact on potential performance increase
- Strong impact on potential cost and power reduction

...

R&D roadmap proposal NRF: Scenario 2, full program

- Assumption: A dedicated RF test stand in addition to the MCTF becomes available in the next 5 years
- Over the next 5 year: In addition to the Scenario 1
 - Design, build and test test-cavities: materials (NRF, HTS), temperature, frequency, higher gradient, stronger B-field, pulse shape
 - Understand frequency (and other parameter) scaling; Important if testing parameters are different from the nominal.
 - Take the obtained test results into account in the design of the prototypes for the MCTF
 - Test the prototype for the MCTF earlier, if possible
- Over the next 10 year: Performance, cost and power optimization.
 - R&D program beyond the MCTF towards the CDR of the collider
 - Optimize performance of the RF cavities
 - Minimize cost and power in RF systems

• Pro:

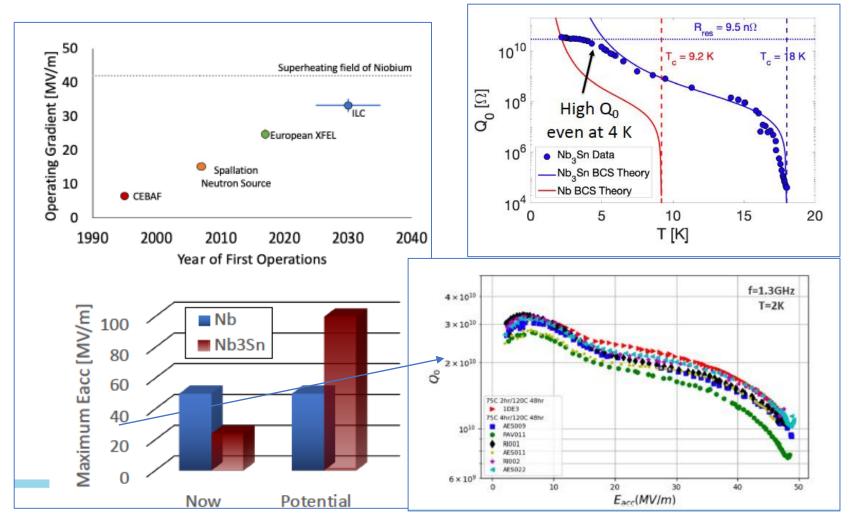
- Dedicated R&D is possible
- Flexibility in terms of testing parameters
- Potential performance increase
- Potential cost and power reduction
- Contra:
 - More R&D resources

...

Accelerators and collider

RF system parameters and challenges

- Super conducting RF (SRF) system for high efficiency and highest possible acceleration rate to minimize the muon decay losses on the way to very high energies: ~10TeV
- Challenges:
 - Large bunch charge in the linacs: 3.6E12 μ => 576nC
 - Large bunch charge in the rings: $2.2E12 \ \mu => 352nC$
 - Short bunch length in the collider: 1.5 mm
 - Highest possible gradient
 - Power efficiency
 - High energy gain per turn in the rings
 - High level of radiation
 - Stray magnetic field


FCCee-tt: 2.2E11 e **35 nC**

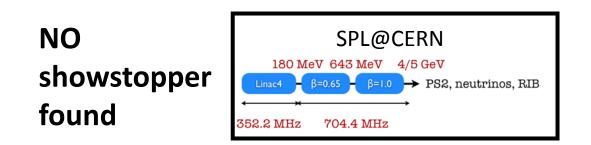
Open points to discuss with HEC WG

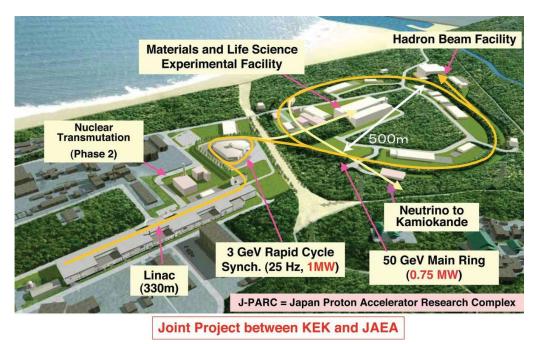
- **RF voltage:** What is the RF voltage (energy gain + over-voltage) in the linacs and rings
- High gradient: nominal gradient in the linacs and rings.
- Energy spread: Energy spread acceptance of the rings?
- Stray magnetic field in the cavities (i.e. 0.1T ?)
- Beam loss and radiation power in the SRF cavities
- Collective effects: single bunch, HOMs

SRF system for Accelerators: State-of-the-art

- Synergy with generic R&D for high gradient SRF for other accelerators (colliders)
- 650 MHz could be a commonly beneficial choice with various projects in the Roadmap Plans and others
- No fundamental reason to get lower surface fields at lower frequency, "only" technological
- Nb3Sn potentially could double the surface fields (gradient0

Critical issues and R&D on SRF


- High gradient at low frequency multi cell cavities: 325, 650 MHz
- **Technology** choice: Bulk vs Coating; Different materials: Nb, Nb3Sn, HTS, ...
- Cavity type(shape) for high gradient and low loss factor
- Pulsed operation. Lorenz force detuning in pulsed mode.
- **RF power sources**: pulsed, high peak power, high efficiency
- Tolerance to external (stray) magnetic field
- Tolerance to the radiation and beam loss
- Power couplers


R&D roadmap proposal: SRF

- Assumption: No direct connection to the MCTF. R&D follows the collider design timeline
- Over the next 5 year: Baseline design
 - Identify potential showstopper and find solutions
 - Energy spread control (large aperture)
 - Bunch length control (high voltage)
 - Required acceleration rate/gradient (high gradient)
 - Provide consistent set of baseline parameters for all accelerators and collider
 - Conceptual design of critical items: cavities, ?...
 - Push high gradient SRF R&D at lower frequency (325 MHz) multi-cell cavities defined in the baseline parameters. Exploit synergy with other projects
 - New materials
 - Coatings
 - Power sources
- Over the next 10 year: Conceptual design.
 - Conceptual design of RF systems for all accelerators and collider
 - Design, fabrication and testing of high gradient cavity prototype(s)
 - Cost and power reduction

• ...

Proton driver: State-of-the-art

