International Muon Collider

RF systems Specifications and Issues

J.P Delahaye / CERN, A.Grudiev / CERN D.Li / LBL, A.Yamamoto / KEK

Many thanks to the reference experts: F.Gerygt, D.Neuffer, D.Stratakis, C.Rogers, A.Bogacz, S.Berg, E.Gianfelice-Wendt

Normational UON Collider Collaboration

RF systems along the IMC complex

RF = multiple fonctions in multiple systems Normal-Conducting, Super-Conducting

- Proton driver (LinacNC, LinacSC, Accumulator, Compressor),
- Front-End (RF Buncher, Phase Rotator),
- Cooling (initial, bunch separation, 6D before merge, bunch merge, 6D after merge, final),
- Acceleration (RLA, RSC and/or FFAG)
- Collider ring

IMC RF systems references

System	Sub-System	Reference	Expert	Rapporteur	
	H-Linac	Project X Conceptual Design	Project X	-	
Driver		SPL conceptual Design	SPL	F.Gerigk	
	Accumulator&Comp.	RAST Vol. 7 (2014) 137–15	R.Palmer	-	
Front-End		2017 JINST 12 T11007	D.Neuffer	D.Neuffer	
	Initial Cooling	2018 JINST 13 P08013	Y. Alexahin	C.Rogers	
	Charge separator	THPH019 at PAC2014	C.Yoshikawa	D.Stratakis	
	6D cooling	2017 JINST 12 P09027	D. Stratakis		
	Before&after merge	PRST-AB 18, 031003 (2015)			
Cooling	Bunch merge	PRAB 19, 031001 (2016) by Yu Bao	Y.Bao		
cooling	6D « helical »	arXiv:1806.00129 [physics.acc-ph]	K. Yonehara	-	
		PRST Ac.Beams 18 (2015) 9, 091001	H. Sayed		
	Final Cooling	PAC2011 thobn2	R. Palmer	C.Rogers	
		2017 JINST 12 T07003	D. Neuffer		
	Injector Linac	2018 JINST 13 P02002	A. Bogacz	A.Bogacz	
	RLAs (to ? GeV)	2018 JINST 13 P02002	A. Bogacz	A.Bogacz	
Acceleration	RCSs (to 1500 GeV)	arXiv:0707.0302v1	D.Summers	S. Berg	
		[physics.acc-ph] 2 Jul 2007	S. Berg		
	FFAG	?	S. Berg	-	
Collider		2018 JINST 13 P11002 + lattice files	Y.Alexahin	E. Gianfelice- Wendt	

J.P.Delahaye

RF at Community meeting (May 20-21, 2021)

System	Sub-System	Expert	Rapporteur	Reference		
	H-Linac	Project X	-	Project X		
Driver				Conceptual Design		
		SPL	F.Gerigk	SPL conceptual		
				Design		
	Accumulator	R.Palmer	-	RAST Vol. 7 (2014)		
				137–15		

Link to Proton Driver Template: F.Gerygk

https://www.dropbox.com/s/y19p11l9bulk1ck/RF%20specifications%20MC%20Driver%20Linac%20FG_JPD.xlsx?dl=0

Driver linac based on SPL

FNAL context, MAP based on project X (8GeV/4MW at 12Hz)

European context, IMC (4 to 5 GeV? Multi-MW at 5Hz?)

- proposed to be based on SPL (5 GeV/40mA/4MW) design on CERN site
- its low energy part (normal conducting) up to 160MeV corresponding to:
 - now operating at CERN (Linac4 LP) although at low rep frequency (2Hz)
 - would require modest upgrading from 2 to 5Hz at low cost with the same current of 40mA (Linac4 HP).
- Its high energy part (super-conducting) corresponding to:
 - the ESS linac with a beam energy of 2.5 GeV/50mA/5MW at 14Hz
 - strongly inspired from the SPL design
 - could serve as an excellent demonstrator with similar beam current.
 - presently being built with first beam available from 2022

J.P.Delahaye

Fig. 2.1: Layout of superconducting linac with intermediate extraction

No detailed design in spite of a challenging accelerator complex:

- Merging 1.5E6 Linac bunches into a single bunch 5E14 H+ / 2ns on target.
- Pulse compression by a factor 1E6 !
- Very low RF frequency: few MHz?

J.P.Delahaye

RF at Co

Figure 3: Schematic of Project X proton accelerator upgraded for use as a Muon Collider proton driver.

to 2.0T, 14.75 m), Drift section (42 m), rf Buncher (21 m), an energy-phase Rotator (24 m), with a Cooler (80 m).

Link to Front End Template: D.Neuffer

https://www.dropbox.com/s/qr0rdeslanoduwz/RF%20specifications%20MC%20F ront%20End%20DN%20JPD%20DN.xlsx?dl=0

ct

Link to Cooling Template: D.Stratakis & C.Rogers

https://www.dropbox.com/s/392zyxkohoj3r5d/RF%20specifications%20MC%20Cooling%20DS%20JPD.xlsx?dl=0

J.P.Delahaye

System	Sub-System	Expert	Rapporteur	Reference	
	Injector Linac	A. Bogacz	A.Bogacz	2018 JINST 13 P02002	
Acceleration	RLAs (to ? GeV)	A. Bogacz	A.Bogacz	2018 JINST 13 P02002	
	RCSs (to 1500 GeV)	D.Summers S. Berg	S. Berg	arXiv:0707.0302v1 [physics.acc-ph] 2 Jul 2007	
	FFAG	S. Berg	-	?	

Links to Acceleration Templates: A.Bogacz (Linac, RLAs) & S.Berg (RCS)

Linac & RLAS: https://www.dropbox.com/s/s67phcdnak1uvpk/RF%20specifications%20MC%20RLA_AB_JPD.xlsx?dl=0

RCSs: https://www.dropbox.com/s/tr1yhnvksqfw67l/RF%20specifications%20MC%20RCS%20SB%20JPD.xlsx?dl=0J.P.DelahayeRF at Community meeting (May 20-21, 2021)

System	Sub-System	Expert	Rapporteur	Reference
Collider		Y.Alexahin	E. Gianfelice-	2018 JINST 13
			Wendt	P11002 + lattice
				files

Link to Collider Ring Template : E.Gianfelice

https://www.dropbox.com/s/czsvvyclmn0vy3o/RF%20specifications%20MC%20CollisionRing_EG.xlsx?dl=0

Summary IMC RF systems

https://www.dropbox.com/s/2e71dj9bzomglwm/MC_RF%20Summary%20Draft.xlsx?dl=0

System				Driver		Front-End	Cooling			Acceleration			Collider	TOTAL	CLIC
Sub-			Driver Linac H-		Accum	Capture&	e& Initial	6D Final	Final	Injector RLAs	RLAs	RCS	Ring	IMC	Acceleratio
system			(SPL	like)	&Comp	Bunching	iiiitial	(2 lines)	(2 lines)	Linac	(2stages)	(3stages)	ning	livic	n
Reference expert			F.Ge	erigk	?	D.Neuffer	C.Rogers	D.Stratakis	C.Rogers	A.Bo	gacz	S.Berg	E.Gianfelio	æ	
	Energy	GeV/c	0.16	5	5	0.255	0.255	0.255	0.255	1.25	62.5	1500	1500		1500
	# bunches (μ+ or μ-)	#	40 mA		1	12	12	1	1	1	1	1	1		312
	Charge/bunch	E12			500	3.57	2.56	7.21	4.39	3.73	3.17	2.22	2.20		3.72E-03
Boom	Rep Freq	Hz	5	5	5	5	5	5	5	5	5	5	5		50
(system	Norm Transv Emitt	ra <mark>d-</mark> m				1.5E-02	3.0E-03	8.3E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05		660/20E-06
exit)	Beam dimens. (H/V) in RF	mm	?	?	?	?	?	?	?	?	?	?	?		1?
CAIL	Norm Long Emitt	rad-m				4.5E-02	2.4E-02	1.8E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03		
	Pulse/Bunch length	m	2.2	ms	0.6 (2ns)	1.1E+01	1.1E+01	9.2E-02	9.2E-02	4.6E-02	2.3E-02	2.3E-02	5.0E-03		4.4E-05
	Power (μ+ and μ-)	W	6.40E+04	2.2E+06	2.0E+06	1.8E+04	1.3E+04	3.0E+03	1.8E+03	7.6E+03	3.2E+05	5.4E+06	5.3E+06		2.8E+07
	Technology		NC Linac4	SC	SC	NC	NC	NC Vacuum	NC	SC	SC	SC	SC		NC High Grad
	Number of cavities	#	23	244	2	120	367	7182	32	52	360	2694	?	11076	149000
	RF length	m	46	237	1	30	105	1274	151	82	1364	2802	?	6092	30000
	Frf	MHz	352	704	44	326to493	325	325-650	20-325	325	650-1300	1300	800	4 to 1300	12000
RF	Grf	MV/m	1-3.7	19 - 25	2	20	20 to 25	19-28.5	7.2-25.5	20	25 to 38	35	?	1 to 38	100
cavities	Aperture	mm	28	80		?	?	?	?	300	150	75	120	28 to 300	2.75
50 1100	Magnetic Field	Τ	0	0		2	3T	1.7-9.6	1.5-4	0	0	0	0	0 to 9.6	0
	Installed RF field	MV	169	5700	4	434	2618	30447	1836	1640	50844	98062	250	1.92E+05	3.00E+06
	Beam Energy gain	MeV	160	4840	0	0	0	0	0	1250	62500	1437000	0	1.51E+06	1.50E+06
	Recirculations	#	1	1		1	1	1	1	1	4.5 to 5	13 to 23	1000	1 to 1000	1
	RF Power/pulse (η=0.6)	MW	25	220	3.E-01	99	429	1172	43	52	360	2024	1.98E-02	4425	1.2E+07
	Technology		klystron	klystron						Klytro	n-IOT				Two Beam
	Cavities/Power Source	#	23	244		4				1 to 2	1 to 2				2
DE	RF Pulse (fill+beam) estim.	ms	2.20	2.20	3.20	0.10	0.10	0.10	0.10	0.03	0.06	0.73	14.80		0.142
KF	Prf/Power Source	MW	11.7	1.93						1	1				15
power	Total Power Sources	#	17	244		30				52	341			?	1638
sources	Installed Peak RF Power	MW	34	275		164	515	1407	52	52	341	2429	2.38E-02	5269	2.46E+04
	Average RF power (η=0.6)	MW	0.27	2.13	0.01	0.05	0.21	0.59	0.02	0.01	0.11	14.88	0.00	18.28	143
	Wall plug power (η=0.6)	MW	0.45	3.55	0.01	0.08	0.36	0.98	0.04	0.01	0.18	24.81	0.00	30.46	289

J.P.Delahaye

RF at Community meeting (May 20-21, 2021)

RF systems along beam lines pretty well defined

- Mainly done by beam designer (Please check, correct and complete)
- Launch RF power systems design by RF experts
 - RF experts to be identified (volunteered)
- This meeting: Focus on identification of major issues:
 - Technical / Beam related (beam loading, instabilities) / Power consumption / Cost....
 - Ranking (criteria?)
 - Can they be mitigated by design review?
 - How to address them and demonstrate their feasibility?