

6D Cooling: RF Issues

Diktys Stratakis Fermi National Accelerator Laboratory

1st Muon Community Meeting (online only) May 20, 2021

Outline

- Rectilinear cooling channel overview
- What we learned about rf cavities from the MAP study:
 - RF breakdown in B-fields
 - Required rf gradients for 6D cooling
 - Optimum rf length and relation to power
 - rf windows design
 - cryostats
 - Required spacing for rf towards implementation
- Remaining questions related to rf and cooling

Collider Ring Higgs Factor harge Separato nitial Cooling Accumulator compresso Phase Rotator **Decay Channe** Buncher Final Cooling 6D Cooling SD Cooling ~10 TeV Bunch Merge -Class Accelerators: Linac, RLA or FFAG, RCS

- The desired 6D emittance for a Muon Collider (MC) is 5-6 orders of magnitude less from the emittance of the muon beam at the production target
- As a result, significant "muon cooling" is required.

History

- MAP considered to alternatives schemes for 6D cooling and formed two independent teams
- Helical cooling channel (HCC) team lead by K. Yonehara
- Vacuum cooling channel (VCC) team lead by D. Stratakis
- The effort had three main phases:
 - 1. Perform a end-to-end simulation study and verify performance goals specified by MAP [Done]
 - 2. Consult with magnet & rf experts, modify design accordingly [Started]
 - 3. Carry out a engineering study of at least one cooling stage [Not started]
- I will share the lessons learned for the VCC team

Between 2013-2015, organized 3 workshops, VCC-dedicated, to discuss progress & exchange ideas with rf & magnet experts

- Straight geometry simplifies construction and relaxes several technological challenges
- Multiple stages with different cell lengths, focusing fields, rf frequencies to ensure fast cooling
- Its performance will be discussed later today

Parameters before the merge

Parameters	Stage 1	Stage 2	Stage 3	Stage 4
Coil tilt (deg.)	3.13	1.80	1.60	0.70
Current density (A/mm ²)	63.25	126.6	165.0	195.0
Max B on coil (T)	4.20	8.47	9.56	11.83
Max B on axis (T)	2.35	3.50	4.82	6.06
Trans. beta (cm)	81.9	54.8	38.3	30.3
Absorber angle (deg.)	40	44	100	110
Absorber type	LH ₂	LH ₂	LH ₂	LH ₂
Rf frequency (MHz)	325	325	650	650
RF gradient (MV/m)	22	22	28	30
Cell length (m)	2.0	1.32	1.0	0.8
Total length (m)	132	171.6	107	70.4

Lattice parameters have been modified over time

Parameters after the merge

Parameters	St. 1	St. 2	St. 3	St. 4	St. 5	St. 6	St. 7	St. 8
Coil tilt (deg.)	0.9	1.3	1.1	1.1	0.66	0.7	0.8	0.8
Cur. Density (A/mm ²)	69.8	90.0	123.0	94.0	168.1	185.0	198.0	198.
Max B on coil (T)	6.8	8.4	12.2	9.2	14.1	14.2	14.20	14.5
Max B on axis (T)	2.6	3.70	4.9	6.0	9.8	10.8	12.50	12.9
Trans. beta (cm)	42.0	27.4	20.2	14.0	8.1	5.9	4.2	3.7
Wedge ang. (deg.)	120	117	113	124	61	90	90	90
Absorber type	LH ₂	LH_2	LH ₂	LH_2	LiH	LiH	LiH	LiH
Rf freq. (MHz)	325	325	325	325	650	650	650	650
RF grad. (MV/m)	19.0	19.5	21.0	22.0	27.0	28.5	26.0	26.0
Cell length (m)	2.75	2.00	1.50	1.27	0.806	0.806	0.806	0.806
Total length (m)	55.0	64.0	81.0	63.5	73.3	62.0	40.3	41.1

Lattice parameters have been modified over time ۲

B-Field at cavity edge (approx.)

12 325 MHz 650 MHz (20-22 MVm) (26-29 MV/m) Magnetic Field, B_{CAV} (T) 10 8 6 2 2 8 10 0 6 4 Stage No

Approximate numbers. Need to be checked again.

A slide presented back in 2014...

MInternational UON Collider Collaboration

Questions to the RF Group

- Operation of RF at 77 K. Power requirements?
- Space needed between rf & coil?
- Is it ok if waveguide connects to rf not from the center?
- Maximum length of cryostat?
- Missing cell configuration by removing rf is feasible?
- RF length: 24 cm (325 MHz), 12 cm (650 MHz) ok?
- Space between cavities? waveguide thickness?
- Integration of Be windows into cavity (Materion)
 - Two step graded rf windows (Slide 8). Feasible?
 - Stage 1 need a 30 cm radius window. Feasible?
 - Last stage has 4.5 cm. Minimum Be thickness?

- Electrons impact rf surface and deposit heat in a small volume
- Surface damage via pulsed heating
- Effect is amplified with a B-field: A Cu made cavity may damaged when B> 1T
- Solution: Use dense materials like Be

RF gradients (J. S. Berg)

• Due to this limitation VCC team decided to restrict the rf gradients in our design according to Scott's numbers

Choice of rf gradient

Slide from 2013...

Ne	ed cons	sistent va	lue	for co	mparis	on	
Ca	Cavity lengths also matter						
Pro	opose c	onsistent	valu	ues			
0	consiste	nt with 17	MV	/m at	201.25 1	MHz	
				\sim	ΔE	ΔE	
	Freq.	Length	0	Grad	v = c	200 MeV/c	
	MHz	cm	M	V/m	MeV	MeV	
	325	30		22	5.51	5.23	
	650	15		31	3.88	3.68	
	975	10	1	38	3.17	3.01	
ober 20	13	J. S. Berg	Analysis	s of Cooling L	attices Vacuum R	F	

J. S. Berg, Vacuum RF Meeting Talk, Oct. 8, 2013

8 Oct

Modular cavity : A game changer

Collaboration

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 072001 (2020)

Operation of normal-conducting rf cavities in multi-Tesla magnetic fields for muon ionization cooling: A feasibility demonstration

D. Bowring[®], ^{*} A. Bross, P. Lane[®], M. Leonova, A. Moretti, D. Neuffer[®], R. Pasquinelli, D. Peterson[®], M. Popovic, D. Stratakis, and K. Yonehara Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

The above experiment, open a path for using higher rf gradients – never simulated this

removable plates (Cu, Al, Be)

Material	B-field (T)	SOG (MV/m)	BDP (× 10^{-5})
Cu	0	24.4 ± 0.7	1.8 ± 0.4
Cu	3	12.9 ± 0.4	0.8 ± 0.2 –
Be	0	41.1 ± 2.1	1.1 ± 0.3
Be	3	$> 49.8 \pm 2.5$	0.2 ± 0.07
Be/Cu	0	43.9 ± 0.5	1.18 ± 1.18
Be/Cu	3	10.1 ± 0.1	0.48 ± 0.14

RF length (T. Luo)

$f_0=325$ MHz, $R_c=0.353$ m							
β	0.6	0.85	1.0				
L_c (m)	0.180	0.245	0.282				
$RT^2/L_c (M\Omega/m)$	36.8 / 18.6	48.2 / 23.9	54.3 / 26.7				
Power (MW)	4.56 / 8.71	4.77 / 9.22	4.89 / 9.52				
$f_0 =$	$f_0=650 \text{ MHz}, R_c=0.177 \text{ m}$						
β	0.6	0.85	1.0				
L_c (m)	0.090	0.122	0.141				
$RT^2/L_c (M\Omega/m)$	52.0 / 26.3	$68.1 \ / \ 33.8$	76.8 / <mark>37.7</mark>				
Power (MW)	1.61 / 3.08	1.69 / <mark>3.26</mark>	1.73 / 3.37				

$$P = \frac{(E \cdot L_c)^2}{(RT^2/L_c)_{max} \cdot L_c}$$

0.8

1.0

1.2

- Performance sensitive to rf length
- The optimum length for a Be made cavity might be different

 5.0×10

0.2

0.4

0.6

This should be taken into account in new designs

Cavity Length Lc (m)

RF windows design

- Beryllium windows are used in muon cooling to reduce surface gradients and improve shunt impedances
- These windows are heated by ohmic losses of rf surface currents. With vacuum rf this heat is only removed by radial conduction in the beryllium
- With inadequate cooling the central temperature can induce serious stresses and window bowing
- This sets minimum window thicknesses requirements.

Cooling Channel before the merge

UON Collider Collaboration

Stage	f (MHz)	rWin (cm)	rStep (cm)	t0 (mm)	t1 (mm)
1	325	30	16	0.3	1.4
2	325	25	15	0.2	0.8
3	650	19	10	0.2	0.6
4	650	13.2	11.4	0.125	0.38

Parameter	Baseline	With Be
Cool rate (trans.)	11.8	10.7
Cool rate (long.)	20.7	18.0
Transmission	49.1%	46.0%

We considered stepped windows considered

Window thermal & stress analysis (Luo)

NInternational UON Collider Collaboration

Predictions at 80 deg. for our 6D lattice

stage	freq	pipe	window
	MHz	cm	μ m
	before	merge	
1	325	35	180
2	325	19	22
3	650	13	10.5
4	650	8.2	5
	after	merge	
1	325	28	90
2	325	24	60
3	325	18	20
4	325	14	10
5	650	9	6
6	650	7.2	2
7	650	4.9	<2
8	650	4.5	<2

Windows up to 50 times thinner when operating at 80 degrees.

R. C. Fernow, MUC-NOTE-COOL 317 (2005)

Concept for cryostats (Palmer)

- Approximately 6 cells are housed in shared cryostats
- Space created by omitting absorbers or some rf cavities
- Space generated can be used add diagnostics
- Impact on performance is unknown

What we leaned about spacing

- A separation of 5.0 cm (2.5 cm each) needs to be added between cavities for tuners and flanges
- Cavities can be powered by a curved waveguide-> simplifies the focusing magnet (no need to split the coils).

Further design questions

- What is the optimum length for RF cavities? How does this change for Be based cavities? How much would a cooling channel benefit from using higher gradients?
- What is the safe thickness for Be windows? How thin can we make them realistically? Is a stepped window design realistic?
- How things could change for an operation at 77 K?
- Sensitivity of cooling performance by adding separations between rf cavities and including realistic Be window thickness's?