

MInternational UON Collider Collaboration

RF Systems Issues of Low Energy Muon Acceleration – Linac and RLAs

by Alex Bogacz Jefferson Lab May 20, 2021

Overview

5 GeV Neutrino Factory based on 'Dogbone' RLA

- Linac (255 MeV 1.25 GeV) Longitudinal compression
- RLA (1.25 5 GeV) 4.5 pass
- Optimized RLA scheme for Higgs Factory (63 GeV)
 - RLA (5 63 GeV) 5-pass
 - Beam loading considerations

Muon Acceleration – Choice of Technology

Acceleration of short-lived muons requires high average gradient, while maintaining very large transverse and longitudinal accelerator acceptances.

- The above requirement drives the design to low RF frequency, e.g. 325 MHz, 650 MHz
- If normal-conducting cavities at that frequency were used, the required high gradients would demand uneconomically high peak RF sources.
- Superconducting RF is a much more attractive solution the RF power can then be delivered to the cavities over an extended time, and thus RF source peak power can be reduced.
- While recirculation (RLA) provides significant cost savings over a single linac, it cannot be used at low energy since the beam is not sufficiently relativistic and will therefore cause a phase slip for beams in higher passes

State of Thought for Multi GeV Muon Acceleration (Circa 2017)

Choice of Linac Repetition Rate

- For optimum performance to maximize number of events (µ → ν decays NF, µ[±] collisions MC) – the linac repetition rates should scale inversely with the laboratory lifetime of the muon in its storage ring:
 - Repetition rates as **high** as 10 kHz for a 5 GeV Neutrino Factory
 - Repetition rates as **low** as 10 Hz for a 5 TeV Muon Collider.

Longitudinal Compression

Single Pass Linac – RF Components

Beam energy	Initial	GeV	0.2	0.255	
	Final	GeV	1.25		
			Type 1	Type 2	
	Technology		SRF	SRF	
RF cavities	Number of cavities	#	22	30	
	RF length/cavity	m	1	2	
	Frf	MHz	325	325	
	Grf	MV/m	20	20	
	Magnetic Field	Т	0	0	
	Integrated RF Field	MV	440	1200	
	Energy gain	MeV	tapered off-crest cavity		
	Recirculations	#	1	1	
	Prf/cavity	MW	1	1	
	Technology		klystron	klystron	
	Cavities/Power Source	#	1	1	
	RF Pulse length	ms	0	0	
RF power sources	Prf/Power Source	MW	1	1	
	Number Power Source	#	22	30	
	Total RF Power	MW	22	30	
	Total RF Energy/pulse	kJ	0	0	
Cryogenics			2.2 K	2.2 K	

'Dogbone' RLA Linac

'half pass', 1250-1625 MeV

quad gradient X&YIm] BETA OISP 4 meter 90 deg. FODO cells BETA Y DISP X DISP Y BETA X 35 25 MV/m, 650 MHz, 2 × 4-cell cavity 1-pass, 1625-2475 MeV mirror symmetric quads in the linac quad gradient X&Y[m] DISP_X&Y[m] BETA BETA X DISP_X DISP_Y ΒΕΤΑ Υ 70 0

initial phase adv/cell 90 deg. scaling quads with energy

'Dogbone' RLA 1 – RF Components

Beam	Initial	GeV	1.25
energy	Final	GeV	5
			Туре 3
	Technology		SRF
	Number of cavities	#	38
	RF length/cavity	m	2
RF cavities	Frf	MHz	650
	Grf	MV/m	25
	Magnetic Field	Т	0
	Integrated RF Field	MV	1900
	Energy gain	MeV	22
	Recirculations	#	4.5
	Prf/cavity	MW	1
	Technology		IOT
	Cavities/Power Source	#	2
RF power sources	RF Pulse length	ms	0
	Prf/Power Source	MW	1
	Number Power Source	#	19
	Total RF Power	MW	19
	Total RF Energy/pulse	kJ	0
Cryogenics			2.2 K

-1-1

Higgs Factory: 5-pass RLA (5 – 63 GeV)

12_____

-1-

Beam Loading Consideration

stored energy in a cavity:

 $\frac{V^2}{\omega(R/Q)}$

 $\omega(R)$

fractional reduction in the cavity voltage :

RF gradient G defined as:

voltage :
$$\frac{\Delta V}{V} = \frac{enN\omega(R/Q)\cos\phi}{V}$$
$$V = n_C G\pi c/\omega_c$$

$$\frac{\Delta V}{V} = \frac{enN\omega^2[(R/Q)/n_C]\cos\phi}{\pi Gc}$$

J.S. Berg

J.-P. Delahaye

fractional voltage reduction:

Particles	2×10^{12}	4×10^{12}	2×10^{12}	4×10^{12}
Frequency	325 MHz	325 MHz	650 MHz	650 MHz
Passes	Relative reduction (%)			
3	2	5	8	16
5	4	8	13	26
7	6	11	18	36
9	7	15	23	47

 $(R/Q)/n_C = 114\,\Omega$

 $\phi = 0$

'Dogbone' RLA 2 – RF Components

Beam	Initial	GeV	5
energy	Final GeV		62.5
			Type 4
RF cavities	Technology		SRF
	Number of cavities #		322
	RF length/cavity	m	4
	Frf	MHz	1300
	Grf	MV/m	38
	Magnetic Field	Т	0
	Integrated RF Field	MV	48944
	Energy gain	MeV	36
	Recirculations	#	5
	Prf/cavity	MW	1
RF power sources	Technology		IOT
	Cavities/Power Source	#	1
	RF Pulse length	ms	0
	Prf/Power Source	MW	1
	Number Power Source	#	322
	Total RF Power	MW	322
	Total RF Energy/pulse	kJ	0
Cryogenics			2.2 K

-1-1

RF system specs for low energy acceleration stages:

- Linac (255 MeV 1.25 GeV) 1-pass
- RLA 1 (1.25 5 GeV) 4.5-pass
- RLA 2 (5 63 GeV) 5-pass
- Next step....
 - Optimized Linac + RLAs scheme for Higgs Factory and beyond...

Thanks for your for attention

by Alex Bogacz Jefferson Lab May 20, 2021