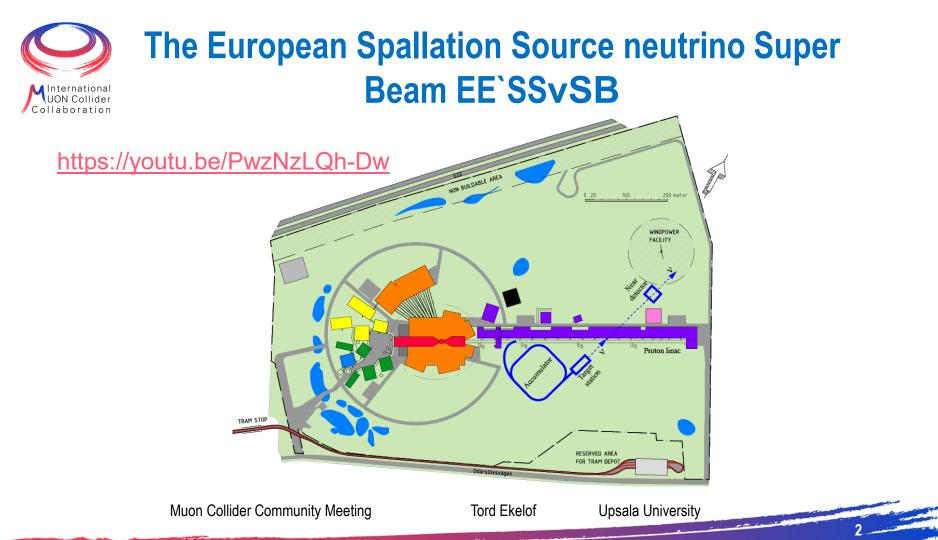


MInternational UON Collider Collaboration

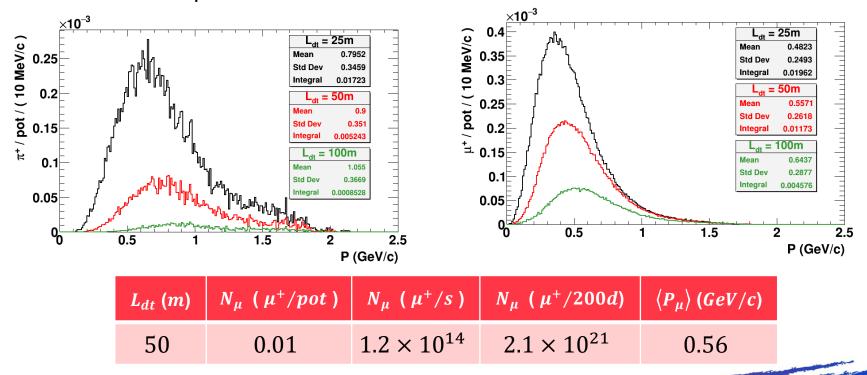
#### Muon Collider Community Meeting 2021 May 2021




UPPSALA UNIVERSITET

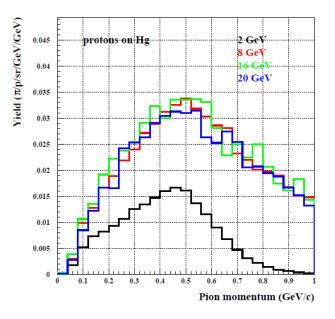
## High-charge 2ns protons bunches from the ESS linac for muon cooling tests

Tord Ekelof


Upsala University






# Pion momentum distribution in a 4m x 4m aperture


# Muon momentum distribution in a 4m x 4m aperture





# Fluka simulations of low momentum meson production provided by Paola Sala

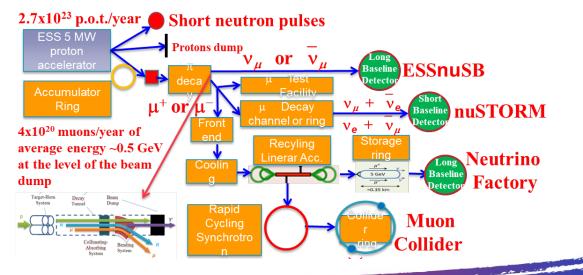




-10 :00






### Prospects for Intensity Frontier Particle Physics with Compressed Pulses from the ESS Linac



Open workshop at Uppsala University

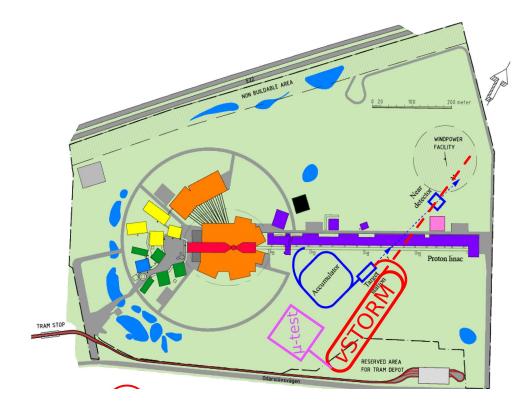
2-3 March 2020

Program and registration at: https://indico.cern.ch/event/849674/







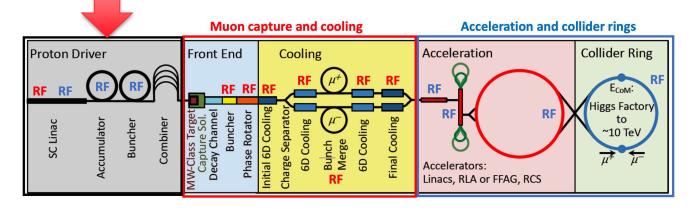

#### The participants in the Uppsala Workshop 2-3 March 2020

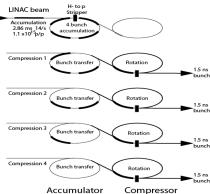




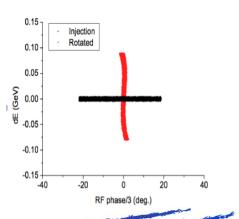
UPPSALA UNIVERSITET






# HIFI Neutrino Factory generic layout


Linac 2.5 GeV 5MW 2.86 ms pulses 9x10<sup>14</sup> H- per pulse Pulse frequency 14 Hz RF frequency 352 MHz Bunch spacing 2.84 ns Bunches washed out in the accumulator ring

H- ion source chopped with f=3.215 MHz  $T_c$ = 320ns 160ns with protons 160ns empty Accumulator ring circumference =386 m =1280ns revolution time =>4 H- pulses around the ring





Compressor has RF field with f = 3.215 MHz Compression of 160ns proton bunch to 2ns creating a large momentum spread which depends on RF field voltage





### Accumulator-compressor test program

| Test program step                                                                                | No of 150 ns H-<br>bunches<br>injected in the<br>accumulator per linac<br>2.86ms pulse | No of circulating<br>compressed<br>bunches in the<br>accumulator | Number of<br>trombone<br>tubes of different<br>length | Total number of<br>protons in the final<br>2 ns bunch<br>produced 14 times a<br>second | Power of a<br>beam of 14<br>such<br>bunches per<br>second |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|
| <b>1</b><br>Fill one chopped 160 ns ion source pulse<br>per linac pulse to test compression time | 1                                                                                      | 1                                                                | 0                                                     | 4.7x10 <sup>10</sup>                                                                   | 250W                                                      |
| <b>2</b><br>Fill every 4 <sup>th</sup> chopped<br>160 ns ion source pulse with H-                | 2'400                                                                                  | 1                                                                | 0                                                     | 1.1x10 <sup>14</sup>                                                                   | 0.63 MW                                                   |
| <b>3</b><br>Fill evry 2 <sup>nd</sup> chopped 160ns H-<br>ion source pulse with H-               | 4'800                                                                                  | 2                                                                | 2                                                     | 2.2x10 <sup>14</sup>                                                                   | 1.25MW                                                    |
| <b>4</b><br>Fill all chopped H- ion source source<br>with H-                                     | 9'500                                                                                  | 4                                                                | 4                                                     | 4.5x10 <sup>14</sup>                                                                   | 2.5MW                                                     |

SPS 100 GeV: 4x10<sup>13</sup> protons per extraction, 2100 bunches of 2ns per extration => 1.9x10<sup>10</sup> protons per 2ns bunch



## Conlusion



UPPSALA

**Complementing the ESSnuSB program to upgra** ESS linac to 10MW and an H- ion and to provide it with an accumulator ring with a 3.125 MHz compressor ring and add a 3.125 MHz chopper to the H- ion source would make it possible to generate, concurrently with the spallation neutron production, 2ns proton bunches with more than 10<sup>14</sup> protons per bunch at a rate of 14 per second that could be used for full intensity tests of different 6D muon cooling modules.







UPPSALA UNIVERSITET

# Thank you for attention