

Science and Technology **Facilities Council**

Magnets for vFFA and collider arc with skew Q

Shinji Machida UKRI/STFC Rutherford Appleton Laboratory

20 May 2021 **1st Muon Community Meeting**

Two exotic options not discussed in MAP

Collider arc with skew quadrupoles

Vertical excursion FFA for muon acceleration

Science and Technology Facilities Council

Two exotic options not discussed in MAP

Collider arc with skew quadrupoles

Vertical excursion FFA for muon acceleration

Science and Technology Facilities Council

Reasons for skew quadrupole lattice

Flexible momentum compaction factor

- Without exciting non-zero harmonic of the dispersion function.
- Without reverse bending.

- Spreading out radiation by wiggling (wobbling) orbit in vertical as well in horizontal.
 - Angle of wiggling orbit is a function of optics, i.e. easy to adjust different configurations.

Science and Technology Facilities Council

Example: 1.5 TeV collider ring *momentum comp=0, arc only*

	Skew FODO		
Energy	1.5 TeV		
Momentum compaction	0		
Circumference	6080 m		
Cell length	16 m		
Magnet length	2 x 6.4 m		
# of cell	380		
Maximum field	14 T		
Field gradient	240 T/m		
Cell tune	0.3131 / 0.3131		

Science and Technology Facilities Council

Critical issues magnet

• The beams go off-centre of skew quadrupoles.

Orbit is off-centre • - 50 mm in horizontal • +/- 25 mm in vertical

> Science and Technology Facilities Council

 Nonlinear components (sext, octu) for both chromaticity correction and flexible momentum compaction factor in the main magnet.

Magnet R&D for collider arc with skew Q

Combined function magnet including

- Skew quadrupole
- Horizontal and vertical dipole
- Skew sextupole
- (Other nonlinearity)

Combined function wide aperture magnet including

- Skew quadrupole
- Horizontal and vertical dipole
- Skew sextupole
- (Other nonlinearity)

R&D proposal

Combined skew quadrupole magnet for collider arc

- Control of the momentum compaction factor and mitigation of radiation due to neutrinos decaying from muons can be achieved by a lattice whose main elements are skew quadrupoles with vertical displacement.
- To make the collider arc compact and increase magnet packing factor, combined function magnet is a solution which combines skew quadrupole, skew sextupole, horizontal and vertical dipole and other nonlinear components.
- As an alternative, horizontal and vertical dipole components could be eliminated if there is enough aperture (+0.05 m).
- Depending on the outcome from feasibility of a combined function magnet, optics design will be adjusted, e.g. location of a nonlinear element in a cell if it is physically separated.

Two exotic options not discussed in MAP

Collider arc with skew quadrupoles

Vertical excursion FFA for muon acceleration

Science and Technology Facilities Council

Reasons for vertical excursion FFA (vFFA)

- **DC magnet**: no need to ramp according to the beam momentum.
- Isochronous operation: no need to modulate RF frequency according to the beam momentum.
- The beam orbit moves up when the beams are accelerated.

Example: 1.5 TeV accelerator in similar size of LHC tunnel

	FODO	FDF	· · · · · ·
Energy	50 GeV to 1.5 TeV	50 GeV to 1.5 TeV	₁₀ To
Cell length	35 m	52.5 m	× Bd
Magnet length	2 x 15 m	3 x 15 m	0 10
# of cell	810	540	1
Maximum field	8.7 T	10.6 T	
Field index m	6.8	3.0	[H
Orbit excursion	0.50 m	1.13 m	<u></u> —
Cell tune	0.3957 / 0.0861	0.3510 / 0.1515	_1

Science and Technology Facilities Council

Reduction of reverse bending is one of optimisation targets.

Critical issues magnet

• DC but large aperture (in vertical) magnet.

• 3D magnetic field increase exponentially.

$$B_x (x, y, z) = B_0 \exp(my) \sum_{i=0}^N b_{xi} (z) z$$
$$B_y (x, y, z) = B_0 \exp(my) \sum_{i=0}^N b_{yi} (z) z$$
$$B_z (x, y, z) = B_0 \exp(my) \sum_{i=0}^N b_{zi} (z) z$$

 $m = (1/B) \left(\frac{\partial B}{\partial y} \right)$

35

17.5 long [m]

where

$$b_{x0}(z) = 0, \qquad b_{x,i+1}(z) = -\frac{1}{i+1} \left(mb_{yi} + \frac{db}{dt} + \frac{db}{dt} \right),$$

$$b_{y0}(z) = g(z), \qquad b_{y,i+2}(z) = \frac{m}{i+2} b_{x,i+1},$$

$$b_{z0}(z) = \frac{1}{m} \frac{dg}{dz}, \qquad b_{z,i+2}(z) = \frac{1}{i+2} \frac{db_{x,i+1}}{dz}.$$

Magnet R&D for small vFFA at STFC/RAL

Magnet specifications for test ring

Energy	3 - 12 MeV
Aperture	700 mm (H) x 300 mm (D)
Field	1.5 ~ 3 T
Gradient	1.6 /m

- First prototype magnet will be normal conducting.
- Plan to construct a superconducting magnet later.

Normal conducting magnet design first prototype

Size	2.3 m (H) x 1.0 m (W)		
Aperture	600 mm (H) x 220 mm (D)		
Field	~ 0.01 T		
Gradient	1.3 /m		
Coils	50 turns		
Space	4.7 mm between coils		

A. Letchford, STFC/RAL

Vertical field

Longitudinal field

14

R&D for muon vFFA magnet

	1st n.c. prototype	12 MeV proton	1.2 GeV proton	1.5 TeV muon
Aperture (H) x (D)	600 mm x 220 mm	700 mm x 300 mm	700 mm x 300 mm	700 mm x 200 mm
Length	1.0 m	0.5 ~ 1.0 m	2 ~ 3 m	10 ~ 20 m
Max field	~ 0.01 T	~ 3 T	~ 6 T	~ 9 T
Gradient, m	1.3 /m	1.3 /m +/- 25%	1.3 /m +/- 25%	6.8 /m
High/low field ratio	2	2	2	~ 30

Science and Technology Facilities Council

 $m = (1/B) \left(\frac{\partial B}{\partial y} \right)$

all numbers are preliminary.

R&D proposal

Magnet for vFFA accelerator

- vFFA as a muon accelerator.
- Feasibility of magnets for vFFA as well as vFFA concept itself has to be
- activity.
- R&D on vFFA magnets aims for the construction of a scale down model of superconducting vFFA magnet.

DC magnet operation together with fixed RF frequency is the main advantage of

demonstrated. At STFC/RAL, feasibility study on vFFA for a spallation neutron source is going on and normal conducting prototype magnet is being designed. Magnets for vFFA muon accelerator may be realised as an extrapolation of the

Thank you for your attention

Science and Technology Facilities Council

17

Superconducting coil

Does the gap in horizontal plane help?

Skew quad

