

Normational UON Collider Collaboration

MDI Common issues (including physics and detector considerations)

Donatella Lucchesi for Physics and Detector group

Università degli Studi di Padova

Interaction Region and MDI Design

The high luminosity requires:

- Low beta-function at the IP (few cm)
- High number of muons per bunch $(N_{\mu} \sim 2 \cdot 10^{12})$
- Muons decay particles: 2×10^5 decay per meter of lattice, $E_{\text{beam}} = 1.5$ TeV with $2 \times 10^{12} \mu$ /bunch

Beam induced background, if not properly treated, could be critical for:

- Magnets, they need to be protected.
- People, due to neutrino induced radiation.
- Detector, the performance depends on the rate of background particles arriving to each subdetector.

A holistic approach is needed, tight together the development of the IR optics, the magnets and the shielding strategies (magnets and detector).

s(m)

s(m)

) and

Optimization of Interaction Region at $\sqrt{s} = 1.5$ TeV

Y.I. Alexahin et al. *Muon Collider Interaction Region Design* FERMILAB-11-370-APC N.V. Mokhov et al. Muon collider interaction region and machine-detector interface design Fermilab-Conf-11-094-APC-TD

Parameter	Unit	Value
Beam energy	TeV	0.75
Repetition rate	Hz	15
Average luminosity / IP	$10^{34}/cm^{2}/s$	1.1
Number of IPs, N_{IP}	-	2
Circumference, C	km	2.73
β^*	cm	1 (0.5-2)
Momentum compaction, α_p	10-5	-1.3
Normalized r.m.s. emittance, $\mathcal{E}_{\perp N}$	π·mm·mrad	25
Momentum spread, σ_p/p	%	0.1
Bunch length, σ_s	cm	1
Number of muons / bunch	10 ¹²	2
Beam-beam parameter / IP, ξ	-	0.09
RF voltage at 800 MHz	MV	16

Quadrupoles in Nb₃Sn characteristics in the papers. Dedicated dipoles to minimize the number of decay electrons in the coils and in the inner part of the detector.

Interaction Region Optimization at $\sqrt{s} = 1.5$ TeV with absorbers

See MARS IR and nozzle optimization @ 0.125, 1.5 and 3 TeV by Nikolay Mokhov

Detector Nozzle Optimization at $\sqrt{s} = 1.5$ TeV

For example, gamma flux as a function of the angle of inner cone opening towards IP at the outer cone angle of 10°

See MARS IR and nozzle optimization @ 0.125, 1.5 and 3 TeV by Nikolay Mokhov

These studies have brought to the final nozzle configuration

Di Benedetto et al., *A study of muon collider background rejection criteria in silicon vertex and tracker detectors*. Journal of Instrumentation13(2018)

Detector Nozzle Optimization

New tool, see BIB Studies @1.5-3 TeV with FLUKA by Francesco Collamati See <u>Advanced assessment of Beam Induced Background at a Muon Collider</u> just out!

6

Comparison of BIB Characteristics $\sqrt{s} = 125 \text{ GeV} - \sqrt{s} = 1.5 \text{ TeV}$

MInternational MUON Collider Collaboration

S.I. Striganov et al. *Reducing Backgrounds in the Higgs Factory Muon Collider Detector* Fermilab-Conf-14-184-APC TUPRO029, and Proc. IPAC2014, Dresden, Germany, June 2014, p.1084 N. Bartosik et al. *Preliminary Report on the Study of Beam-Induced Background Effects at a Muon Collider* arXiv:1905.03725

Comparison of BIB Characteristics $\sqrt{s} = 125 \text{ GeV} - \sqrt{s} = 1.5 \text{ TeV}$

Comparison between $\sqrt{s} = 1.5$ TeV and $\sqrt{s} = 125$ GeV

- BIB absolute fluxes very similar
- Momentum distribution quite different

Time distribution as expected and Z distribution very similar The IR has been designed to obtain that.
Would be possible to do it also at high energy?

Design a Detector with BIB

Current Detector Configuration for $\sqrt{s} = 1.5$ TeV

CLIC Detector technologies adopted with important modifications to cope with BIB.

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Current Tracker Configuration for $\sqrt{s} = 1.5$ TeV

Use directional Information

Cut Efficiency Single muon: 99.7% Single muon + BIB: 55.2%

- If the primary vertex is known can be very effective
- To be tuned in presence of secondary vertices or long-lived particles

S. Pagan Griso

BIB deposits large amount of energy in both ECAL and HCAL

Timing and shower profile should be used in clusters reconstructions

b-jets Secondary Vertex Reconstruction at $\sqrt{s} = 1.5$ TeV

L. Sestini, L. Buonincontri

b-jet identification

- Tracks selected by the regional tracking
- Secondary vertex requested to be inside the jet cone
- First step toward a b-jet tagging, under development a ML-based algorithm

- Study Beam-Induced Background at $\sqrt{s} = 3$ TeV, use MAP IR and the nozzle of $\sqrt{s} = 1.5$ TeV, then
 - Optimize nozzle
 - Optimize IR
- Detector studies are just at the first step, a lot of room for improvements!
- Physics objects performance are very good even if not optimize, room for improvements in particular with ML techniques
- Dedicated studies and optimization is needed for the forward region, covered by the nozzle

Strong collaboration between accelerator and detector physicists is mandatory for the proper MDI design.

A. Mereghetti

