

Extrapolations to 6-10 TeV, what is needed

Yunhai Cai and Yuri Nosochkov SLAC National Accelerator Laboratory

the First Muon Collider Community Meeting, May 20, 2021

Interaction Region Linear Optics for 6 TeV Design

Field@poletip: <15 T in quads <20 T in bends β*_{x,y} =1 cm L* =6 m

Aperture of IR magnets

Modification of the 3 TeV design (by Y. Alexahin et al) Field increased with energy: < 15T in quads, < 20T in bends

Main Parameters

Parameter	Unit	1.5 TeV design	3 TeV design	6 TeV design
Beam energy	TeV	0.75	1.5	3.0
Number of IPs		2	2	2
Circumference	m	2730	2767	6302
β*	cm	1	1	1
Tune x/y		18.56/16.58	20.13/22.22 (temporary)	38.23/40.14 (temporary)
Momentum compaction		-1.30E-5	-2.88E-4	-1.22E-3
Normalized emittance	(π)mm·mrad	25	25	25
Momentum spread	%	0.1	0.1	0.1
Bunch length	cm	1	1	1
Muons/bunch	1012	2	2	2
Repetition rate	Hz	15	15	15
Average luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.1	4.5	7.1

5

Chromatic Optics

Chromatic Beta Beating Nonlinear Chromaticity 18000 0.4 W, Horizontal Vertica Wv 16000 0.35 14000 12000 0.3 Fractional Tune W functions 10000 0.25 8000 6000 0.2 4000 0.15 2000 0.1 0 3000 4000 5000 6000 7000 -2 2 3 1000 2000 -5 -3 -1 0 4 5 0 -4 1 s[m] δ ×10⁻³

and the second s

Dynamic and Momentum Apertures

Tracking with synchrotron oscillation

-1-

Sextupole Schemes

-1-2

Linear Optics of 10 TeV (CM) Muon Collider

- Scaled from 6 TeV design with factor: F=10/6
 - All: Length->Length*F
 - Bending angle kept same
 - K₁->K₁/F²
 - K₂->K₂/F³
- Keep phase advances same
- No change of beam size

 $\beta^*_{x,y}$ =1.7 cm, L* =10 m, Circumference=10.5 km

Comparison of Dynamic Apertures

6 TeV

Dynamic aperture is large in a big ring

Luminosity

• Bunch luminosity: $L_b = f_{rev} \frac{N_b^2}{4\pi\sigma_x \sigma_y} R_g$

where R_g is a geometrical reduction from the hourglass effect and crossing angle. It is also a good indicator for dynamical effects at high bunch charge.

Total luminosity:

$$L = n_b L_b$$

Beam-Beam Limit

• For round beams, the beam-beam parameter is given by

$$\xi = \frac{r_{\mu} N_b \beta^*}{4\pi \gamma \sigma^2}$$

And the luminosity can be rewritten as

$$L = \frac{c I \gamma \xi}{r_e r_\mu I_A \beta^*} R_g$$

where I_A =17045 A. We should expect the luminosity increases linearly with respect to the energy. A smaller β^* and larger ξ is also helpful. Taking an example of the 6 TeV (CM) design at E₀=3 TeV, we have I=0.016 A, ξ =0.0868, R_a=0.8, β^* =0.01 m and the luminosity is 14x10³⁴ cm⁻²s⁻¹.

Summary

- Preliminary designs of 6.3 km 6TeV and 10.5 km 10TeV CM energy muon collider rings are presented
- The IR chromatic correction scheme uses –I noninterleaved pairs of sextupoles
- The arc chromatic correction scheme provides local cancelation of sextupole resonance driving terms in each quarter ring
- The dynamic aperture is very large and the momentum dynamic aperture of bare lattice is up to 0.4%

What Next?

- Study tolerance of the lattices
- Low the beta* at the IP
- Shorten the L* for the detectors
- Realistic IR magnets
- Study the energy deposition in IR
- Study radiation from the rings
- Optimization of luminosity and mitigation of risks

Acknowledgements and References

- We would like to thank our former colleague: Min-Huey Wang who has done the most work on the 6 TeV design
- Special recognition of the work of Yuri Alexahin (FNL) who was the leader in the lattice design of the muon colliders

References:

- Y. I. Alexahin, E. Gianfelice-Wendt, V.V. Kashikhin, N.V. Mokhov, A.V. Zlobin, and V.Y. Alexakhin, "Muon collider interaction region design", PRSTAB 14, 061001 (2011)
- M.-H. Wang, Y. Nosochkov, Y. Cai, and M. Palmer, "Design of a 6 TeV muon collider", 2016 JINST 11 P09003
- J. P. Delahaye, at al. "Input to the European Particle Physics Strategy Update: Muon Colliders"

MInternational UON Collider Collaboration

Thank you for attention