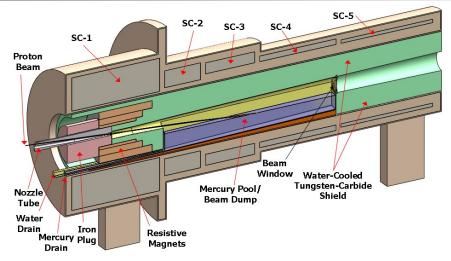


Introduction and Aims; Integration Issues

C. T. Rogers
ISIS
Rutherford Appleton Laboratory

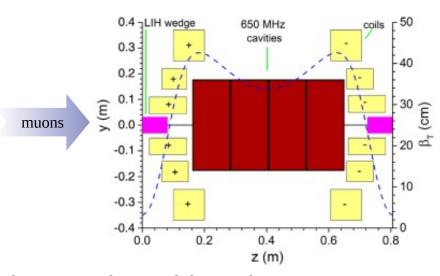
Muon Cooling and Production

- Muon cooling and production (MPC)
 - Multi-MW target with solenoid focusing
 - Collection of resultant pions and decay to muons
 - Clean-up of beam impurities
 - Sorting muons into (several) RF buckets
 - Cooling
 - Separating mu+ and mu-
 - Merging RF buckets into one bunch
 - More cooling
- Key technologies
 - High power targetry
 - Solenoid capture with multi-MW target
 - Ionisation cooling
 - RF
 - High field solenoids


Aim

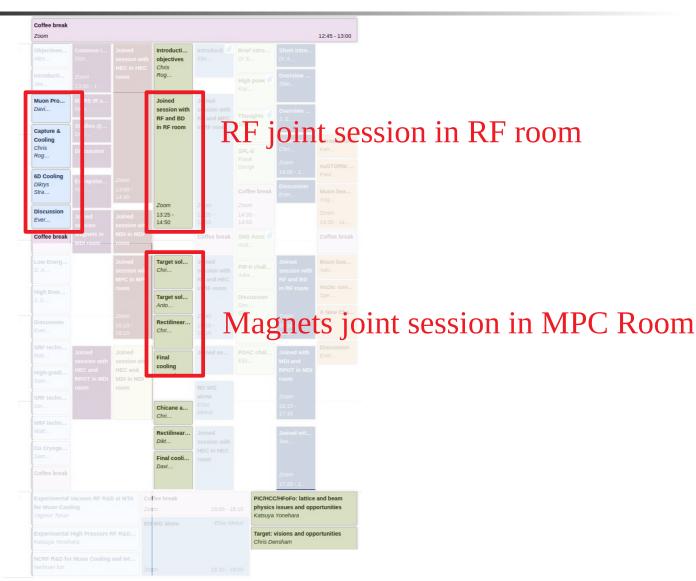
- Aim is to build a prioritised R&D list
- Where are there potential problems?
 - How severe?
 - Can we fix with paper studies? Hardware studies?
 - Do we need to develop a "plan B"?
- Where are there opportunities?
 - Can R&D investment deliver improvement on the MAP baseline?
 - Paper studies?
 - Hardware studies?
 - Can we exploit new or alternate technologies?

Target



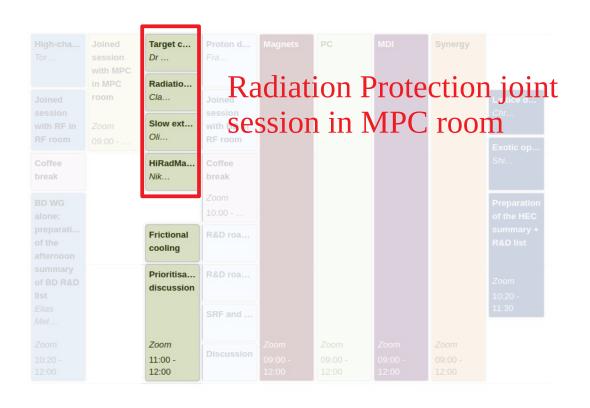
- High power target in solenoid very challenging
 - Factor 100 beyond state-of-the-art in power
 - Factor 10 beyond state-of-the-art in field
- Challenges
 - Power deposit on target
 - Radiation load on the solenoid
 - Extraction of residual beam/heat
- Mitigations
 - Do we need a prototype? If so what?
 - Do we need to develop a plan B (target + horn)?

Capture and Cooling



- Solenoids
 - Minimum emittance ~ 1/B₁
 - Field flips/etc
 - What is the maximum field?
- High gradient RF
 - Large bucket required
 - What is the maximum gradient that can be achieved?
- Integration
 - RF tends to break down in solenoids
 - Mitigations
 - Gas filled cavity
 - Beryllium walled cavity
- Other issues? Space charge, beam loading, etc etc
- What should go in the "test facility?" Other tests/prototypes?

Agenda (Thursday)



Agenda (Friday)

RF: summary preparati	Magnets: summary preparati	HEC: summary preparati	MPC: summary preparati	PC: summary preparati	BD: summary preparati	RPOT: summary preparati	MDI: summary preparati	Synergy: summary preparation
Zoom			Zoom			Zoom		
			13:00 - 14:00					

Integration issues

- Potential issues pertaining to the whole system
 - Transmission and matching
 - Quench Protection System
 - Charge separation
 - Codes

Transmission and Matching

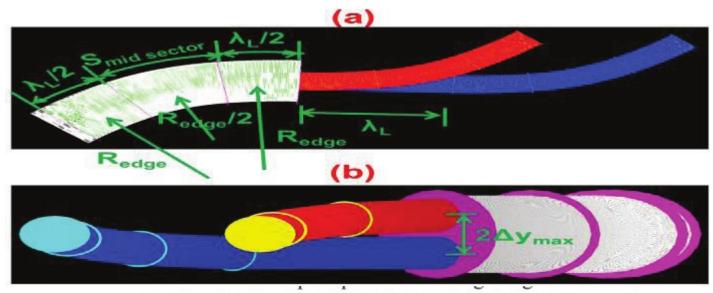
Final cooling paper:

with absorber material. This includes energy loss, straggling, multiple scattering, and muon decays.

In this simulations we used a Gaussian input beam with normalized transverse emittance ϵ_{\perp} of 300 μ m-rad and longitudinal emittance ϵ_{L} of 1.5 mm. The initial momentum distribution was generated with an average longitudinal momentum of 135.0 MeV/c. Tracking was β performed using an initial sample of 10⁷ particles matched and injected into the first ionization cooling stage.

- What about rectilinear, bunch merge, etc?
 - How good is matching between different lattices
- Start-to-end simulation is desirable

Quench protection system



- Solenoid lattice from target to end of cooling is coupled
 - Fringe field of adjacent magnets overlaps
- Is it possible to make a QPS that does not quench the entire system?
 - Do we need to make an optics solution?

Charge separation

Charge separation

charge of the muon, but a charge separator had not been designed. The tight time constraint forbade the design of a realistic charge separator, so a study was performed to emulate the effects of a simplified charge separator on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels.

Codes

- Two codes in common use
 - ICOOL (BNL)
 - G4Beamline (Muons, Inc / Fermilab)
- For collective effects, Warp
- They do everything we want at the moment
- As time goes by, we will want new features
 - Deal with novel physics issues
 - Add in new beam elements, as required
- Need to ensure that we maintain the capability