

Rectilinear cooling channel

Diktys Stratakis Fermi National Accelerator Laboratory

1st Muon Community Meeting (online only) May 20, 2021

Outline

- Rectilinear cooling channel overview
- Lattice design
- Performance
- Future work

- Front-end produces 21 well aligned muon bunches
- Two sets of 6D cooling schemes
 - One before recombination (trans ε≈1.5 mm)
 - One after recombination (trans ε≈ 0.30 mm or less)

Focus of

this talk

Final cooling (if necessary)

- Straight geometry simplifies construction and relaxes several technological challenges
- Multiple stages with different cell lengths, focusing fields, rf frequencies to ensure fast cooling
- Its performance will be discussed later today

Tapered lattice design: 8 stages

MInternational UON Collider Collaboration

- We set two constrains in our (initial) design:
 - Peak fields on coils don't exceed Niobium Tin limits
 - Cavities within> 1 T operate at 50% of the achievable gradient at 0 T

Performance

- Complete end-to-end simulation from the target (point 1)
- 6D emittance reduction by five orders of magnitude (point 5)
- Achieved emittances and transmissions specified by MAP

Quality Factor

Quality factor appears relatively stable but worth to recheck again

Future: Improve matching

MInternational UON Collider Collaboration

Matching to 6D VCC from Phase-Rotator

- Matching with 9 solenoidal coils
- ~4% gain in performance
- Allows reducing aperture $35 \rightarrow 30$ cm

Parameter	Baseline	With Matching
Cool rate (trans.)	2.13	2.19
Cool rate (long.)	2.76	2.81
Transmission	65.2% (132 m)	68.8% (132 m)

11

Future: Simulate with higher gradients

 Increasing the rf gradient can reduce the length of the cooling channel

Future: Rectilinear with HTS magnets

Transverse Cooling for Stages B8 - B12

If HTS magnet technology is considered, rectilinear channel can reduce the 6D emittance even more

> Don Summers, University of Mississippi

Future: Multivariable optimization

- Nelder-Mead algorithm: Objective is to maximize luminosity.
- Applied for VCC optimization: 8 parameters each time
- Promising results for first stage: 25% shorter channel!

Design and feasibility questions

Lattice Design

- Cooling of muons of both signs is a bonus. How far can we push the FOFO snake or a similar channel?
- Would a higher rf gradient make the cooling channel shorter? Would integration of optimization algorithms help? [Details]
- How far can we push the rectilinear using HTS magnets?

RF Cavities

- Can we operate vacuum rf cavities in magnetic fields? [Details]
- Is it possible to construct a Be based cavity?
- What is the appropriate thickness and shape of rf Be windows?
- Absorbers
 - What are realistic shapes of a LH "wedge" absorber? [Details]
 - What is their tolerance on MC beam intensities?
- Beam dynamics
 - Impact of collective effects on beam cooling [Details]

Design and feasibility questions

Magnets [Details]

- Current densities are near the limits of Nb3Sn. Other magnet technologies?
- Are forces & stresses in coils acceptable?
- Tilted coils or dipoles? Holger's proposal?
- Required instrumentation and assembly [Details]
 - Identify required diagnostics & how to operate them under cooling environment
 - Design space for integrating them
 - Space for waveguides appropriate space between coils and rf Engineering design

Influence of space-charge

[BACK]

- At the end of cooling, 5x10¹² muons are squeezed within a 2 cm rms bunch. There is a concern for space-charge (SC)
- Simulation revealed that SC causes particle loss & longitudinal emittance growth

Modular cavity test: A game changer

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 072001 (2020)

Operation of normal-conducting rf cavities in multi-Tesla magnetic fields for muon ionization cooling: A feasibility demonstration

D. Bowring⁰,^{*} A. Bross, P. Lane⁰, M. Leonova, A. Moretti, D. Neuffer⁰, R. Pasquinelli, D. Peterson⁰, M. Popovic, D. Stratakis, and K. Yonehara *Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA*

removable plates (Cu, Al, Be)

Material	B-field (T)	SOG (MV/m)	BDP (× 10^{-5})
Cu	0	24.4 ± 0.7	1.8 ± 0.4
Cu	3	12.9 ± 0.4	0.8 ± 0.2
Be	0	41.1 ± 2.1	1.1 ± 0.3
Be	3	$> 49.8 \pm 2.5$	0.2 ± 0.07
Be/Cu	0	43.9 ± 0.5	1.18 ± 1.18
Be/Cu	3	10.1 ± 0.1	0.48 ± 0.14

A Beryllium based cavity sustained a high gradient in the presence of multi-tesla B-fields!

[BACK]

Future: Simulate with higher gradients

 Increasing the rf gradient can reduce the length of the cooling channel

Emittance exchange for the Muon g-2 Experiment

Engineering design

Last Stage

Design of cryostats

- 1. Approximately 6 cells (or half cells in early stages) are housed in shared cryostats
- 2. The strict periodicity of focus coils is maintained
- 3. Space to separate cryostats is made by either
 - a) omitting hydrogen absorbers (in early stages) and reducing local rf gradients, or
 - b) omitting some of the rf cavities (in a late stage) and shortening, or omitting a hydrogen absorber
- The space gained can be used for diagnostics and allows installation or removal of a cryostat without disturbing any others.

Dis-assembly for repair or replacement

- 1. Close gate valves on either side of cryostat
- 2. Let air into space between near gate valves
- 3. Open flange between them
- 4. Pull flanges apart and remove complete cryostat laterally
- 5. Dis-assemble in clean room if necessary

- For LH absorber it is easier to construct a cylindrical absorber
- Slightly degrades cooling

