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MW-Class Target

* Front-end produces 21 well aligned muon bunches

« Two sets of 6D cooling schemes

— One before recombination (trans €=1.5 mm)

_ : Focus of
— One after recombination (trans €= 0.30 mm or less) this talk

« Final cooling (if necessary)
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Straight geometry simplifies construction and relaxes
several technological challenges

Multiple stages with different cell lengths, focusing fields, rf
frequencies to ensure fast cooling

Its performance will be discussed later today
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Magnetic Field, B (T)

Stage No.
« We set two constrains in our (initial) design:

— Peak fields on coils don’t exceed Niobium Tin limits

— Cauvities within> 1 T operate at 50% of the achievable gradientatO T




Lattice acceptance
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Performance
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* Complete end-to-end simulation from the target (point 1)

« 6D emittance reduction by five orders of magnitude (point 5)

* Achieved emittances and transmissions specified by MAP

. Overall distance ~ 900 m ' End-to-End to simulation”

phase-rotation
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« Quality factor appears relatively stable but worth to
recheck again
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Matching to 6D VCC from Phase-Rotator

e WYCC BASELINE {r=30 cm)
=——VCC AFTER Matching (r=30 em)

Stage 1

20 40 60 80 100
2 (m)

= \/CC BASELINE (r=30 cm)

« Matching with 9 solenoidal coils o [ msENE 0
« ~4% gain in performance | |
» Allows reducing aperture 35 — 30 cm

Cool rate (trans.) 2.13 2.19
Cool rate (long.) 2.76 2.81
Transmission 65.2% (132 m) 68.8% (132 m)




. Simulate with higher gradients
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- 325 MHz 22 MV/m, 650 MHz 28 MV/m
| (simulated as of today)
gradient up by 20%

| ]1(|)0. ~ 12(|)0' -~ .3(1)0' - .4(|)0] - '500
Distance, z (m)

Increasing the rf gradient can reduce the length of the

cooling channel




Future: Rectilinear with HTS magnets
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Longitudinal Cooling for Stages BS - B12

0.002500

« If HTS magnet technology is
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\_, . considered, rectilinear channel can

reduce the 6D emittance even more
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Future: Multivariable optimization

* Nelder-Mead algorithm: Objective is to maximize luminosity.

« Applied for VCC optimization: 8 parameters each time

* Promising results for first stage: 25% shorter channel!
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Design and feasibility questions

Lattice Design

Cooling of muons of both signs is a bonus. How far can we push the FOFO
snake or a similar channel?

Would a higher rf gradient make the cooling channel shorter? Would
Integration of optimization algorithms help? [Delalls]

How far can we push the rectilinear using HTS magnets?

RF Cauvities
— Can we operate vacuum rf cavities in magnetic fields? [Details]
— Is it possible to construct a Be based cavity?
— What is the appropriate thickness and shape of rf Be windows?
Absorbers
— What are realistic shapes of a LH “wedge” absorber? [Deialls]
— What is their tolerance on MC beam intensities?
Beam dynamics
— Impact of collective effects on beam cooling [Details]

=




Design and feasibility questions

Magnets [Details]
— Current densities are near the limits of Nb3Sn. Other magnet technologies?
— Are forces & stresses in coils acceptable?
— Tilted coils or dipoles? Holger’s proposal?
* Required instrumentation and assembly [Details]
— ldentify required diagnostics & how to operate them under cooling environment

— Design space for integrating them
— Space for waveguides — appropriate space between coils and rf - Engineering

design




Magnet technology
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we®d |nfluence of space-charge
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« At the end of cooling, 5x10%? muons are squeezed within a 2
cm rms bunch. There is a concern for space-charge (SC)

« Simulation revealed that SC causes particle loss &
longitudinal emittance growth
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Modular cavity test: A game changer

2% (Cu, Al, Be)

Material B-field (T) SOG (MV/m) BDP (x107%)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 072001 (2020) Cu 0 244 +£0.7 1.8 £0.4
Cu 3 129+04 0.8 £0.2
Operation of normal-conducting rf cavities in multi-Tesla magnetic fields Be 0 All+2.1 1103
for muon ionization cooling: A feasibility demonstration Be 3 >498£25 0.2 +0.07
D. Bowring®, A. Bross, P. Lane®, M. Leonova, A. Moretti, D. Neuffer®, R. Pasquinelli, BC/CU 0 43.9+0.5 118 + 1.18
D. Peterson®, M. Popovic, D. Stratakis, and K. Yonehara Be / Cu 3 10.1 £ 0.1 048 +0.14

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

« A Beryllium based cavity sustained a high gradient in the
oresence of multi-tesla B-fields!




. Simulate with higher gradients
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- 325 MHz 22 MV/m, 650 MHz 28 MV/m
| (simulated as of today)
gradient up by 20%

| ]1(|)0. ~ 12(|)0' -~ .3(1)0' - .4(|)0] - '500
Distance, z (m)

Increasing the rf gradient can reduce the length of the

cooling channel




Emittance exchange for the Muon g-2
Experiment

. Proof-of-principle experiment: Demonstrated 8% gain [BACK]
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PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 053501 (2019)

PR I T S S S 't I 1 P
5 0 ’ Application of passive wedge absorbers for improving the
performance of precision-science experiments

Diktys Stratakis
Fermi National Accelerator Laboratory, Batavia, lilinois 60510, USA
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Engineering design

First Stage =% Last Stage

Bellows 2 cavities missing between each cryostat
hydrogen wedge vaveguides
325 MHzrf  absorber Gate valve 650 MHz rf

— " ———

Missing absorber & 2 cavities
between each cryostat

nitrogen shield

waveguides
/ \ ‘LiH absorber

L

. . bellows
Gate valve \l/ coils  nitrogen shield

L

5 Scale(m) 6 3 Scale {m)

Design of cryostats
1. Approximately 6 cells (or half cells in early stages) are housed in shared cryostats
2. The strict periodicity of focus coils is maintained
3. Space to separate cryostats is made by either
a) omitting hydrogen absorbers (in early stages) and reducing local rf gradients, or

b) omitting some of the rf cavities (in a late stage) and shortening,
or omitting a hydrogen absorber

4. The space gained can be used for diagnostics and allows
installation or removal of a cryostat without disturbing any others.

Dis-assembly for repair or replacement
1. Close gate valves on either side of cryostat
Let air into space between near gate valves

open flange between them

2
3
4. Pull flanges apart and remove complete cryostat laterally
5

Dis-assemble 1in clean room if necessary

February 20, 2014 D. Stratakis | DOE Review of MAP (FNAL, February 19-20, 2014)



Wedges vs. Cylinders
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 For LH absorber it is easier to construct a
cylindrical absorber

« Slightly degrades cooling




