

Approaches to Final "Cooling"

David Neuffer Fermilab Don Summers, Terry Hart Ole Miss R. Palmer, H. Sayed, BNL

- Final Cooling for a Collider
 Intro, options
- Final Cooling Simulations –

-H. Sayed

- Other Final Cooling scenarios and variants
- Final scenario variations
 - -w/D. Summers & T. Hart
 - round to flat and slicing
- Emittance exchanges
 - Wedges

Final cooling

- Baseline High energy collider has final "cooling"
 - $-\epsilon_{x,} \epsilon_{y}: 0.0003 \rightarrow 0.0003m$
 - $-\epsilon_L : 0.001 \rightarrow 0.1m$
 - Mostly emittance exchange...
- Outline
 - Baseline scenario
 - Simulation
 - Variation
 - Can we use the round to flat beam "emittance exchange" ?
 - to change the rules
 - cool, rotate, slice (transverse) recombine (longitudinal)

- For high-energy collider, we want transverse emittance as small as possible
- Ionization cooling equations get you to $\varepsilon_t = 0.0002 \text{ m} (1984)$

$$\varepsilon_{N,eq} \cong \frac{\beta_t E_s^2}{2\beta m c^2 L_R (dE/ds)} \qquad \beta_t \cong \frac{2P_\mu (GeV/c)}{0.3B}$$

• Minimize ε_t by large B, small P_{μ}

Palmer scenario (2011)

- "Baseline" Muon Collider final cooling stages
 - No actual cooling emittance exchange
 - High magnetic fields
 - Impossible "rf"

Table 1: Rf Parameters of 40 T Example

	El	E2	freq	grad	ace L
	MeV	MeV	MHz	MV/m	m
NCRF	34.6	66.6	201	15.5	2.1
NCRF	34.8	66.9	201	15.5	2.1
NCRF	36.0	67.1	201	15.5	2.0
NCRF	36.0	54.5	153	11.1	1.7
NCRF	30.6	41.3	110	7.4	1.5
NCRF	24.9	32.4	77	4.7	1.6
NCRF	20.7	25.7	53	2.9	1.7
NCRF	17.4	20.0	31	1.5	1.7
Induction	13.6	15.0	18	1.0	1.4
Induction	10.3	10.7	10	1.0	0.4
Induction	7.5	7.2	6	1.0	0.7
Induction	5.1	7.0	5	1.0	1.8
Induction	5.1	7.4	4	1.0	2.3

Final Cooling <u>H. Sayed et al.</u>

Ш IV 135m long PART I PART II Consists of 16 stages absorbers 65-59 cm t field integral to limit 25 Long absorbers 57-40 25 cm 20 20 the transverse Relatively smaller E 15 $-130 \rightarrow 110 \rightarrow 90 \rightarrow 70 \text{ MeV/}^{\text{longitudinal coupling}}_{\text{m}}$ 15 transverse amplitudes ш + already longer 10 10 bunch length increase in O₊ • 62 MeV \rightarrow 21 MeV 0 0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2 2.5 3 3.5 4 0 Z [m] Z [m] -B: 25→30 T Medium absorber 35 PART III ART IV thickness 35-20 cm Small absorbe 30 25 Larger energy spread thickness 20-10 cm $\beta_t \cong \frac{2P_\mu \ (GeV/c)}{0.3B}$ 25 will lead to unwanted 20 E E chromatic effects 20 15 15 ш ш amplitudes 10 10 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 **Parameter changes** Z [m] Longitudinal phase space - Rf: 325 → 10 MHz 75 70 Matching solenoids LH₂ Absorber 65 -60255 ≥55 ≥50 ⊒45 Acceleration RF $-\sigma_{\tau}$: 5 cm \rightarrow 180 cm 35 30 2510 (20 t [ns] Acceleration Some field flips 30 T solenoids Energy loss in LH₂ • Energy phase longitudinalphase space rotation rotation RF Phys. Rev. ST Accel. Beams 18, 091001

Simulation results

System is ~135m long

- ε_{t,N} : 300 →55 ×10⁻⁶ m
- ε_L : 1.5→75mm
 - not quite specs
- Transmission ~ 50%

First part has best cooling

- After that, emittance exchange with some heating
- Can improve by larger B

– Also go to smaller P_{μ}

Extend Cooling with Advanced Methods...

- Parametric resonance IC
 - Derbenev, Morozov
- Use Li lens for cooling
 - ε_{t,N} → <0.0001m
- Plasma lenses
- Optical stochastic cooling
 - First demonstration (2021, IOTA)
- Extend to higher B fields
 - RFOFO-D. Summers, T. Hart
- Phase space manipulations
 - Slice x and/or y, drift, recombine,
- Emittance Exchange
 - wedges

• Extend Rectilinear channel with 21T, 28, 35, 42 T

- $\varepsilon_t \rightarrow 0.0001 \text{ m}, \varepsilon_L \rightarrow 0.0008 \text{ m}$
- Cooler beam into "Final Cooler"

Longitudinal Cooling for Stages B8 - B12

Wedges for Final Cooling

- TeV Collider wants small ϵ
 - $\epsilon \rightarrow 25 \ \mu m \text{ or less}$
- Baseline final cooling is
 low.....

Mostly emittance exchange Consider

 Can do most of this with wedge absorbers ...

Wedge parameters

- Diamond, w=1.75mm, $\theta = 100^{\circ}(4.17\text{mm thick at center})$

Z(cm)	Pz	ε _x (μ)	ε _y	ε _L (mm	σ _E MeV	6-D ε increase	Pz vs. x Pz vs. x 0.11 Entries 999 0.11 Mean x 8.186e-006 Mean x 0.0241 0.105 RMS x 0.00163 RMS y 0.004939 0.1 Provide the second sec
0	100	97	95.5	1.27	0.46	1.0	0.095
0.4	96.4	33.4	96.3	4.55	1.64	1.24	0.085
0.8	92.4	22.7	96.5	8.94	3.22	1.65	0.075 Pz - x plot

- reduces ϵ_x by factor of 4.3, ϵ_L increases by factor of 7.0
 - first half of wedge more efficient than second half \ldots

Second wedge

- if rematched to same optics ($P_z \rightarrow 100 \text{ MeV/c}, \sigma_E \rightarrow 0.46 \text{ MeV}$)
 - $\epsilon_x: 23 \rightarrow 27\mu; \epsilon_y: 97 \rightarrow 23 \mu$

Emittance exchange: Slice and dice

- Slice beam transversely
- Drift separated beams
- Combine longitudinally
- Schemes with relatively large numbers of bunch splittings possible
 - D. Summers "Potato slicer"
 - 16 → 1

Two-stage transverse split

Solenoidal Cooling: Beams are not round

- In solenoid:
 - Eigen modes are not:
 - $\{x,\,p_x\}$, $\{y,\,p_y\}$
 - Drift, Cyclotron modes
- Only cyclotron mode is cooled
 - Field flip exchanges C, D
- Without flips, emittances become "flat"
 - $\epsilon_1 \epsilon_2 = \epsilon_k \epsilon_c = (\epsilon_t \ell) (\epsilon_t + \ell)$
 - $\rightarrow \epsilon_x \epsilon_y$
- Optimum final cooling state References
 May be a flat beam
 A. Burov, S.
 2.004002 (2)

Canonical Coordinates:

Cyclotron mode

$$\begin{pmatrix} \kappa_1 \\ \kappa_2 \end{pmatrix} = \sqrt{\frac{c}{eB}} \begin{pmatrix} k_y \\ k_x \end{pmatrix} = \sqrt{\frac{c}{eB}} \begin{pmatrix} p_y + \frac{eB}{2c} x \\ p_x - \frac{eB}{2c} y \end{pmatrix}$$

- Drift mode
$$\xi \end{pmatrix} \quad \left[eB \begin{pmatrix} d \end{pmatrix} \right] = \sqrt{\frac{eB}{2c}} \begin{pmatrix} x - \frac{c}{2c} p \end{pmatrix}$$

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \sqrt{\frac{eB}{c}} \begin{pmatrix} d_x \\ d_y \end{pmatrix} = \sqrt{\frac{eB}{c}} \begin{pmatrix} \frac{x}{2} - \frac{c}{eB} p_y \\ \frac{y}{2} + \frac{c}{eB} p_x \end{pmatrix}$$

A. Burov, S. Nagaitsev, A. Shemyakin, PRSTAB3 094002 (2000)A. Burov, S. Nagaitsev, Y. Derbenev, Phys. Rev.

E 66, 016503 (2002)

- Beam has large angular momentum L from non-flip
 - means beam internally has asymmetric emittance
- Beam is in same format as in electron source
 - Beam cooled to thermal properties within large B
- Round to Flat beam transform
 - Demonstrated at FNAL (electron injector)
 - ~3 skew quads +

$$-\epsilon_{+}, \epsilon_{-} \rightarrow \epsilon_{\chi}, \epsilon_{y}$$

$$\varepsilon_{4D} = \varepsilon_T^2 = \varepsilon_+ \varepsilon_- = (\varepsilon_P + L)(\varepsilon_P - L)$$

Summary

- Final Cooling:
 - Baseline system
 - High-field solenoid, H absorbers at low energy
 - Low-frequency rf \rightarrow induction Linac
 - In simulation, (almost) meets design goal
 - Can be improved
- Alternatives for improvements should be explored
- Optimum final emittance likely to be asymmetric

 $-\varepsilon_x < \varepsilon_y$

Will be important research topic

Bernd Stechauner, CERN tech. student

Cooling within solenoids

Ionization cooling

- Absorbers within solenoids
 - Cools k₁, k₂
- Cyclotron mode is preferentially cooled
- With

$$\varepsilon_{x} = \sqrt{\left\langle x^{2} \right\rangle \left\langle p_{x}^{2} \right\rangle - \left\langle x p_{x} \right\rangle^{2}}$$

and
$$\ell = \frac{1}{2} \langle x p_y - y p_x \rangle$$

then:

$\varepsilon_1 \varepsilon_2 = \varepsilon_x \varepsilon_y - \ell^2$

- Typically (at $\varepsilon_x = \varepsilon_y = \varepsilon_t$)
 - $\varepsilon_1 \varepsilon_2 = \varepsilon_k \varepsilon_c = (\varepsilon_t \ell) (\varepsilon_t + \ell)$

- With field flips:
 - $k_{1,} k_{2}$ and d_{1} , d_{2} change identities with each flip
 - Both modes are equally damped
 - Angular momentum is damped

Without field flips

- One mode is preferentially cooled
- Canonical angular momentum not damped