

Approaches to Final "Cooling"

David Neuffer Fermilab Don Summers, Terry Hart Ole Miss R. Palmer, H. Sayed, BNL

- Final Cooling for a Collider – Intro , options
- Final Cooling Simulations
	- H. Sayed
- Other Final Cooling scenarios and variants
- Final scenario variations
	- w /D. Summers & T. Hart
	- round to flat and slicing ….
- Emittance exchanges
	- Wedges …..

Final cooling

- Baseline High energy collider has final "cooling"
	- $-\varepsilon_{\mathsf{x},\;}\varepsilon_{\mathsf{y}}$: 0.0003 \rightarrow 0.00003m
	- $-$ ε_L : 0.001 \rightarrow 0.1m
		- Mostly emittance exchange...
- **Outline**
	- Baseline scenario
	- Simulation
	- Variation
		- Can we use the round to flat beam "emittance exchange" ?
			- to change the rules
		- cool, rotate, slice (transverse) recombine (longitudinal)

- **For high-energy collider, we want transverse emittance as small as possible**
- **Ionization cooling equations get you to** ε_t = 0.0002 m (1984)

$$
\varepsilon_{N,eq} \approx \frac{\beta_t E_s^2}{2\beta mc^2 L_R (dE/ds)} \qquad \beta_t \approx \frac{2P_\mu (GeV/c)}{0.3B} \qquad \frac{d\varepsilon_N}{ds} = -\frac{C}{\beta}
$$

Minimize ε_t **by large B, small P**_u

Palmer scenario (2011)

- "Baseline" Muon Collider final cooling stages
	- No actual cooling emittance exchange
	- High magnetic fields
	- Impossible "rf"

Table 1: Rf Parameters of 40 T Example

Final Cooling H. Sayed et al.

 III IV • **135m long** PART I PART II Consists of 16 stages absorbers 65-59 cm Long absorbers 57-40 25 25 cm 20 20 Relatively smaller Ε 15 $-130\rightarrow$ 110 \rightarrow 90 \rightarrow 70 MeV/ $\overline{C}^{\text{Ingitudinalcoupling}}$ 15 transverse amplitudes \mathbf{m} 10 + already longer 10 bunch length \cdot 62 MeV \rightarrow 21 MeV 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 α 0.5 o. $0⁵$ $2 [m]$ $2 [m]$ $-B: 25 \rightarrow 30 T$ Medium absorber 35 PART III . ART IV thickness 35-20 cm Small absorbe 30 25 Larger energy spread thickness 20-10 cm $\beta_t \cong \frac{2 P_\mu (GeV/c)}{c^2}$ P_{μ} (GeV/c 25 will lead to unwanted 20 Ξ chromatic effects E 20 15 15 m m amplitudes $t = \frac{}{0.3}$ 10 *B* 10 1.5 2 2.5 3 3.5 4 $0 \t 0.5 \t 1$ 1.5 2 2.5 3 3.5 4 \circ 0.5 $\mathbf{1}$ • **Parameter changes** 2 [m] Longitudinal phase space $\frac{75}{70}$ $-$ Rf: 325 \rightarrow 10 MHz Matching solenoids 65 LH₂ Absorber **Acceleration RF** σ _z : 5 cm \rightarrow 180cm 40 35 30 $25\frac{1}{10}$ 20 _{t [ns]} 30 T solenoids Acceleration • **Some field flips** Energy loss in LH₂ Energy phase longitudinalphase space rotation rotation RF Phys. Rev. ST Accel. Beams **18**, 091001

Simulation results

• **System is ~135m long**

- ε_{LN} : 300 \rightarrow 55 \times 10⁻⁶ m
- ε_L : 1.5→75mm
	- not quite specs
- Transmission ~ 50%

• **First part has best cooling**

- After that, emittance exchange with some heating
- **Can improve by larger B**

– Also go to smaller P_{μ}

Extend Cooling with Advanced Methods… International
UON Collider
Ilaboration

 $Emit long (mm)$

- **Parametric resonance IC** – Derbenev, Morozov
- **Use Li lens for cooling**
	- ε_{LN} \rightarrow <0.0001m
- **Plasma lenses**
- **Optical stochastic cooling**
	- First demonstration (2021, IOTA)^{***},
- **Extend to higher B fields**
	- RFOFO-D. Summers, T. Hart
- **Phase space manipulations**
	- Slice x and/or y, drift, recombine,
- **Emittance Exchange**
	- wedges

• **Extend Rectilinear channel with 21T, 28, 35, 42 T**

- ε ² **t** 0.0001 m, ε ¹ \rightarrow 0.0008 m
- **Cooler beam into "Final Cooler"**

Longitudinal Cooling for Stages B8 - B12

•

Wedges for Final Cooling

- TeV Collider wants small ε
	- $\varepsilon \rightarrow 25 \mu m$ or less
- **Baseline final cooling is** low…..

Mostly emittance exchange Consider

• Can do most of this with wedge absorbers …

• **Wedge parameters**

– Diamond, w=1.75mm, θ = 100°(4.17mm thick at center)

- reduces ϵ_{x} by factor of 4.3, ϵ_{L} increases by factor of 7.0
	- **first half of wedge more efficient than second half** …

• **Second wedge**

- if rematched to same optics ($P_z \rightarrow 100$ MeV/c, $\sigma_F \rightarrow 0.46$ MeV)
	- $\epsilon_{\rm x}$: 23 \rightarrow 27µ; $\epsilon_{\rm v}$:97 \rightarrow 23 µ

D. Neuffer 12

Emittance exchange: Slice and dice

- **Slice beam transversely**
- **Drift separated beams**
- **Combine longitudinally**
- **Schemes with relatively large numbers of bunch splittings possible**
	- D. Summers "Potato slicer"
	- $-16 \rightarrow 1$

Two-stage transverse split

Solenoidal Cooling: Beams are not round

- **In solenoid:**
	- Eigen modes are not:
		- $\{x, p_x\}$, $\{y, p_y\}$
	- Drift, Cyclotron modes
- **Only cyclotron mode is cooled**
	- Field flip exchanges C, D
- **Without flips, emittances become "flat"**
	- $\varepsilon_1 \varepsilon_2 = \varepsilon_k \varepsilon_c = (\varepsilon_t \ell) (\varepsilon_t + \ell)$
	- \rightarrow $\varepsilon_{\rm x}$ $\varepsilon_{\rm y}$
- **Optimum final cooling state may be a flat beam References**

Canonical Coordinates:

– Cyclotron mode

$$
\begin{pmatrix} \kappa_1 \\ \kappa_2 \end{pmatrix} = \sqrt{\frac{c}{eB}} \begin{pmatrix} k_y \\ k_x \end{pmatrix} = \sqrt{\frac{c}{eB}} \begin{pmatrix} p_y + \frac{eB}{2c} x \\ p_x - \frac{eB}{2c} y \end{pmatrix}
$$

– **Drift mode**

$$
\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} eB \end{pmatrix} \begin{pmatrix} d_x \\ d_x \end{pmatrix} = \begin{pmatrix} eB \begin{pmatrix} \frac{x}{2} - \frac{c}{eB} p_y \end{pmatrix}
$$

$$
\begin{pmatrix} 51 \\ \xi_2 \end{pmatrix} = \sqrt{\frac{eB}{c}} \begin{pmatrix} x \\ d_y \end{pmatrix} = \sqrt{\frac{eB}{c}} \begin{pmatrix} 2 & eB + y \\ \frac{y}{2} + \frac{c}{eB} p_x \end{pmatrix}
$$

A. Burov, S. Nagaitsev, A. Shemyakin, PRSTAB 3 094002 (2000)

A. Burov, S. Nagaitsev, Y. Derbenev, Phys. Rev. E 66, 016503 (2002)

Round to Flat beam transform

- **Beam has large angular momentum L from non-flip**
	- means beam internally has asymmetric emittance
- **Beam is in same format as in** photocathode LI_{ν} L3 **electron source**
	- Beam cooled to thermal properties within large B
- **Round to Flat beam transform**
	- Demonstrated at FNAL (electron injector)
	- $-$ ~3 skew quads +

$$
- \varepsilon_{+}, \varepsilon_{-} \rightarrow - \varepsilon_{x}, \varepsilon_{y}
$$

$$
\varepsilon_{4D} = \varepsilon_T^2 = \varepsilon_+ \varepsilon_- = \left(\varepsilon_P + L\right)\left(\varepsilon_P - L\right)
$$

Summary

- **Final Cooling:**
	- Baseline system
		- High-field solenoid, H absorbers at low energy
		- Low-frequency rf \rightarrow induction Linac
	- In simulation, (almost) meets design goal
	- Can be improved
- **Alternatives for improvements should be explored**
- **Optimum final emittance likely to be asymmetric**

 $-\varepsilon_{\rm x} < \varepsilon_{\rm v}$

Will be important research topic

Bernd Stechauner, CERN tech. student

Cooling within solenoids

2

• **Ionization cooling**

- Absorbers within solenoids
	- Cools k_1 , k_2
- Cyclotron mode is preferentially cooled
- With

$$
\varepsilon_{x} = \sqrt{\langle x^2 \rangle \langle p_{x}^2 \rangle - \langle x p_{x} \rangle^2}
$$

• and
$$
\ell = \frac{1}{2} \langle xp_y - yp_x \rangle
$$

• **Witt**

then:

$\mathcal{E}_1 \mathcal{E}_2 = \mathcal{E}_x \mathcal{E}_y - \ell^2$

- Typically (at $\epsilon_{x} = \epsilon_{y} = \epsilon_{t}$)
	- $\epsilon_1 \epsilon_2 = \epsilon_k \epsilon_c = (\epsilon_t \ell) (\epsilon_t + \ell)$
- **With field flips:**
	- k_1 , k_2 and d_1 , d_2 change identities with each flip
	- Both modes are equally damped
		- Angular momentum is damped

• **Without field flips**

- One mode is preferentially cooled
- Canonical angular momentum not damped