Parametric-resonance ionization cooling (PIC)

- Half-integer parametric resonances induced in cooling channel
- Enables order of magnitude equilibrium emittance reduction

Correlated optics for periodic focusing at absorber positions

Half-integer resonance at absorber positions drives reduction in x, growth in x'

Ionization cooling occurs at absorber plates, and RF cavities restore longitudinal momentum

Jefferson Lab

Sy - 1st Muon Community Meeting, May 20, 2021

PIC possible parameters

• Equilibrium angular spread and beam size at absorber

$$\theta_a^2 = \frac{3}{2} \frac{(Z+1)}{\gamma \beta^2} \frac{m_e}{m_\mu}, \quad \sigma_a = \frac{1}{2\sqrt{3}} \theta_a w$$

• Equilibrium emittance $\varepsilon_n = \frac{\sqrt{3}}{4\beta}(Z+1)\frac{m_e}{m_{\mu}}w$

improvement by a factor of

$$\frac{\pi}{\sqrt{3}}\frac{w}{\lambda} = \frac{\pi}{2\sqrt{3}}\frac{\gamma'_{acc}}{\gamma'_{abs}}$$

Parameter	Unit	Initial	Final
Muon beam momentum, <i>p</i>	MeV/c	250	250
Number of particles per bunch, <i>N_b</i>	10 ¹⁰	1	1
Be $(Z = 4)$ absorber thickness, w	mm	20	2
Normalized transverse emittance (rms), $\varepsilon_x = \varepsilon_y$	μm	230	23
Beam size at absorbers (rms), $\sigma_a = \sigma_x = \sigma_y$	mm	0.7	0.1
Angular spread at absorbers (rms), $\theta_a = \theta_x = \theta_y$	mrad	130	130
Momentum spread (rms), $\Delta p/p$	%	2	2
Bunch length (rms), $\sigma_{\rm z}$	mm	10	10

Sy – 1st Muon Community Meeting, May 20, 2021

Twin helix implementation

- Two equal-strength opposite-helicity helical dipole harmonics + Straight quad to redistribute horizontal and vertical focusing
- Orbit in horizontal plane + uncoupled horizontal, vertical motion

Phase space behavior with induced parametric resonance

Emittance evolution, no stochastics or energy straggling

Twin helix challenges

· Beam aberrations cause beam blowup at focal points

Two helix periods

- Under correlated optics conditions, continuous harmonically-varying multipoles excite nonlinear resonances
- Aberration compensation is difficult with limited multipole choices

Skew PIC implementation

- Skew quads in PIC channel for strong x-y coupling → correlated optics for radial motion
- Betatron tunes shifted away from resonant values → easier aberration compensation

Skew PIC theory

$$x'' + [K^{2}(s) - n]x + g(s)y = K(s)\delta$$
$$y'' + ny + g(s)x = 0$$

$$\begin{pmatrix} x_f \\ y_f \\ x'_f \\ y'_f \end{pmatrix} = M \begin{pmatrix} x_i \\ y_i \\ x'_i \\ y'_i \end{pmatrix}, \quad M = \begin{pmatrix} M & 0 \\ L & N \end{pmatrix}, \quad \det(M) = \det(M) \cdot \det(N) = 1$$
$$\det(M) = \det(N) = 1 \text{ for}$$
stability of linear motion

$$M = \begin{pmatrix} M & 0 \\ 0 & N \end{pmatrix}, \quad M = N = \begin{pmatrix} \cos(4\theta) & -\sin(4\theta) \\ \sin(4\theta) & \cos(4\theta) \end{pmatrix}$$
$$\tan \theta = \frac{K^2 - 2n - \sqrt{(K^2 - 2n)^2 + 4g^2}}{2g}$$

Simultaneous x, y focusing with induced parametric resonance

Sy – 1st Muon Community Meeting, May 20, 2021

Skew PIC challenges

Dynamic aperture optimization easier than in normal PIC, but still challenging

x,y and x',y' phase space including sextupole, octupole, decapole harmonics

- Able to stabilize particle motion within ± 90 mrad without damping and ± 120 mrad with damping
- However, ± 120 mrad is $\sim 1\sigma_{\theta}$
- Serious problem with amplitude-dependent time of flight for large θ when longitudinal motion is included

Plasma channel with PIC

- Strong focusing would help alleviate many of the problems
- Consider plasma focusing in gas-filled RF cavities (K. Yonehara)
- Idea supported by initial simulations

• Proposal submitted on this topic

