

Helical FOFO & Helical cooling channel

Katsuya Yonehara

Fermilab

Outline

- Concept of Helical FOFO and Helical Cooling Channel
- Simulation result
- Lattice parameter & RF gradients
- Technology challenge

Concept of Helical FOFO

coils: R_{in}=42cm, R_{out}=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

- Generate resonant dispersion by using alternating solenoid focusing
- Rotation plane

 $xcos(\phi_k) + ysin(\phi_k) = 0$

$$\phi_k = \pi (1 - 2/N_s)(k+1)$$

 $k = 1, 2, ..., N_s$

 N_s is the number of solenoids per period If $N_s = 2(2 \cdot j + 1)$, μ^+ and μ^- orbits are identical with a half period off

 $(j = 1, N_s = 6 \text{ in this example})$

• Thus, HFOFO cools both signs

[:]O & HCC, Yonehara

- RF gradient = 25 MV/m, RF frequency = 325 MHz, filled with 50-atm hydrogen gas
- Matching and Beam window are included in the result

Next step for Helical FOFO

- Reoptimize lattice
 - RF gradient down to 20 MV/m
- Engineering design
 - Solenoid coil tilted by 2.5 mrad: Need a stress analysis
 - Either gas-filled or vacuum RF cavities: Need to add a waveguide
 - Integrate beam elements
 - Cold channel vs Room Temperature channel

Concept of Helical Cooling Channel (HCC)

Helical beam element

Simulation result

- Matching
 - Transmission: 80 %
- 6D HCC
- RF parameter
 - E = 20 MV/m
 - v = 325 & 650 MHz
- Gas pressure
 - 160 atm at 300 K 43 atm at 80 K
- Magnetic fields
 - Bz = 4 12 Tesla
- Equilibrium emittance
 - ϵ_{T} = 0.6 mm (MAP goal: 0.3 mm)
 - ϵ_{L} = 0.9 mm (MAP goal: 1.5 mm)
- Transmission (one cooling cycle) 60 %
- Channel length (one cooling cycle) 250 m

Engineering design

Table 1: Powe	r estimation	for helical	RF system
---------------	--------------	-------------	-----------

Section	Unit	2	3	4	
λ	m	0.8	0.5	0.4	
\hat{eta}_T/\hat{eta}_L	m	0.16/2.1	0.098/1.5	0.079/1.5	
Sect. L	m	100	100	50	
RF grad	MV/m	20	20	20	
RF Rout	mm	146	73	73	
RF/λ		8	10	8	
Freq	MHz	325	650	650	
Q factor		31,002	13,194	13,194	
Stored E	J/cell	33.4	4.17	4.17	
Peak RF	MJ/cell	2.2	1.3	1.3	

Section 2, 3, 4 are shown in slide 4

- Dielectric loaded RF cell can store higher RF energy than a pillbox cell
- But, it requires higher peak RF power than a pillbox cell

 Table 2: Power estimation for helical magnet

Section	Unit	2	3	4
HS R _{in}	mm	217	105	100
HS Rout	mm	247	195	190
Coils/ λ		10	10	10
Coil L	mm	80	50	40
Cur. D	A/mm^2	271	149	189
Dipole <i>b</i> on beam	Т	1.61	2.58	3.22
Gradient b' on beam	T/m	-0.79	-2.01	-3.14
Straight B_{sol}	Т	-3.21	-8.78	-7.15
B_z	Т	5.32	8.51	10.6
Stored B	MJ/m	4.7	10.7	10.5

• Magnetic energy including with a straight solenoid magnet is extremely high

Next step

- Beam dynamics: Need a beam adapter to match muon beam into HCC
- Reoptimize beam lattice
- Technological challenge
 - Helical solenoid magnet:
 - Integrate RF into helical solenoid
 - Cold channel vs Room temperature channel