Magnet Requirements for Cooling

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers ISIS Rutherford Appleton Laboratory

Magnets for Capture/Cooling

- Magnets important for cooling section
 - Beam is high emittance
 - Contain to prevent large beam sizes
 - "Simple" things like bends need to be done carefully
 - Cooling requires tight focussing to be effective
- Use solenoids and solenoids + dipoles

References

Subsection	Contact	Reference	Lattice Files	
Capture				
Particle Selection	Scott Berg	Proc. IPAC2014 TUPME022	With Rogers – not run	
Buncher	Dave Neuffer?	https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4355	With Rogers – not run	
Phase Rotator	Dave Neuffer?	https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4355	With Rogers – not run	
Initial Cooling				
HfoFo – gas filled		https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4377	With Rogers – run	
HfoFo – vacuum		https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4377	?	
Charge Separation				
Charge Separation	Cary Yoshikawa	https://www.osti.gov/biblio/1113648	?	
6D Cooling				
Rectilinear	Diktys Stratakis	https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003	With Rogers – run	
Helical snake	Katsuya Yonehara	https://iopscience.iop.org/article/10.1088/1748-0221/13/09/P09003	With Katsuya	
Bunch Merge				
Phase Rotator and trombone	Yu Bao	https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.031001	?	
6D Cooling				
Rectilinear	Diktys Stratakis	https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003	With Rogers – run	
Helical snake	Katsuya Yonehara	https://iopscience.iop.org/article/10.1088/1748-0221/13/09/P09003	With Katsuya	
Final Cooling				
Linear Cooling	Hisham Sayed	https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001	?	
PIC	James Malonev?	https://arxiv.org/pdf/1401.8256.pdf	2	
Potato slicer	Don Summers?	https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4403		

Magnets for Capture/Cooling

- Baseline:
 - Capture
 - HFoFo
 - Charge separation
 - Rectilinear Cooling
 - Bunch merge
 - Final Cooling
- Alternatives:
 - More rectilinear cooling
 - Helical cooling channel
 - Potato slicer
 - Parametric resonance Ionisation Cooling
- Start with final cooling and go backwards
 - High field, low(er) aperture is probably harder than low field, high aperture

Final cooling

- Challenge is to get very tight focussing
- Go to higher fields and lower momenta
 - Causes longitudinal emittance growth
 - Chromatic aberrations introduce challenges
 - Elaborate phase rotation required to keep energy spread small
 - Move to low RF frequency to manage time spread

Final cooling

- Note that constant field regions may require large aperture
 - RF cavities will be large (<100 MHz)

Example magnet design

TABLE I. 50 T high-field magnet parameters.

Magnet length [m]	Inner radius [m]	Coil thickness [m]	Current density I/A [A/mm ²]
0.317	0.025	0.029	164.26
0.337	0.055	0.041	142.43
0.375	0.098	0.056	125.88
0.433	0.157	0.067	119.07
0.503	0.228	0.120	85.99
0.869	0.355	0.089	39.60
0.868	0.454	0.104	44.30
0.992	0.575	0.252	38.60

Why the high field?

Rectilinear Cooling Channel

- Use strong solenoids to get tight focussing
- Weak dipole fields introduce dispersion for longitudinal cooling
 - Modelled by rotating solenoid perpendicular to field axis
 - Probably in reality want to use a separate dipole coil for tuning
- A1-A4 (before bunch merge) and B1-B4 (after merge)
 - Work in first stability region (phase advance $< \pi$)
- B5-B8 after bunch merge
 - Work in second stability region (π < phase advance < 2π)
 - Fourier harmonics of B_z(z) chosen for momentum acceptance

Rectilinear Cooling Channel

HFoFo

- HFoFo
 - First cooling cell
 - Similar to rectilinear cooling from magnet point of view

Rectilinear Cooling Channel

		Solenoid		
Ctows	Beam pipe	peak on-axis	Tilt angle	Dipole peak
Stage	radius [mm]		[aeg]	πεια [1]
HfoFo	400	4	0.22	0.02
A1	300	2.2	3.1	0.12
A2	250	3.4	1.8	0.11
A3	190	4.8	1.6	0.13
A4	132	6	0.7	0.07
B1	280	2.2	0.9	0.03
B2	240	3.4	1.3	0.08
B3	180	4.8	1.1	0.09
B4	140	6	1.1	0.12
B5	90	9.8	0.7	0.12
B6	72	10.5	0.7	0.13
B7	49	12.5	0.8	0.17
B8	45	13.6	0.6	0.14

Effect of harmonics

Scaling

 $\begin{array}{l} B_0 \rightarrow 2B0 \\ B_1 \rightarrow 2B1 \\ k \rightarrow 2k \end{array}$

Question: How short can we make the cells? How high field?

Rectilinear B8 magnet design

H. Witte et al, IPAC2014, WEPRI103

Dipole saddle coil added in magnet bore

Bunch merge

science & Technology Facilities Council

To cooling

Solenoids and Bent Solenoids

- Also solenoids in many places
 - e.g. Front end 2 T, 500 mm radius? TBC
 - Bent solenoids
 - Few degree bend, no dipole just solenoid field
 - Charge separation may require "elliptical" solenoids or large aperture
 - Design is rather immature
 - In capture region bent solenoid experiences ~ 100s kW of beam power

Technology challenge - Solenoids

Personal View!

- High field solenoids
 - State of the art solenoids required in many places
 - Transfer of "laboratory-class" solenoid to "accelerator-class"
- Radiation load
 - Not aware of detailed assessment of effect of muon decays on magnet systems
 - c τ_µ ~ 660 m
 - Target and particle selection clearly have issues with secondaries
- Quench protection
 - Extremely compact magnet schemes throughout the muon source
 - Quench in one magnet likely to induce quench in all magnets
 - ~ km line of quenching magnets!
 - Needs care
 - Can this be managed in PSU?
 - Do we need an optics solution (fire break)?

Discussion

- Few questions raised in the slides
- Priorities:
 - Final cooling higher fields → more luminosity
 - Rectilinear cooling can outperform "final cooling" given stronger magnets; is this feasible?
- "Demonstrator"
 - Are there any questions which need beam to resolve?

