

High power study of J-PARC Rapid Cycling Synchrotron (RCS)

1st Muon Community Meeting 20th May, 2021

Kazami Yamamoto on behalf of J-PARC Center Accelerator Division

Outline

- ✓ Overview of J-PARC RCS
- ✓ High power study results

J-PARC Japan Proton Accelerator Research Complex

3 proton accelerators and (3+1) experimental facilities

3GeV-RCS in J-PARC

Design parameters

Circumference	348.333 m
Superperiodicity	3
Harmonic number	2
F _{rev}	0.61-0.84 MHz
F _{rf}	1.23-1.67 MHz
Injection energy	400 MeV
Extraction energy	3 GeV
Repetition rate	25 Hz
Particles per pulse	8.3e13 with 1 MW
Output beam power	0.75 MW in ordina operation
—	
Transition gamma	9.14
Number of dipoles	24
quadrupoles	60 (7 families)
sextupoles	18 (3 families) r
steerings	52 0
RF cavities	12 t
	r

Injection

Time (µsec)

Switch the parameters of RCS between MLF ↔ MR during 20 ms interval

for MLF

for MR 1

Availability : around 95% for MLF for the last several years

High power study results

1 MW stable operation
Trial beyond 1 MW
Numerical simulation

Summary of 1-MW user operation in 2020

- Foil keeps its function.
- Beam loss is within expectation
- 12hr stop due to RF cavity #3 & 8 failure(deterioration of the capacitor(#3) and vacuum tube(#8))
- The cooling water temperature cannot be maintained at a 1-MW power when the outside air temperature becomes high.(next slide)

Issue : Interlock due to higher temperature of the cooling water

RF need more power to compensate the beam loading at 1-MW power! \rightarrow Increases the power consumption in the vacuum tube and the return cooling water temperature exceeded limit twice.

High activation around the injection point

- Residual dose around the stripper foil is caused by secondary particles (protons and neutrons) generated by the nuclear reactions at the stripper foil.
- Maximum worker dose around the injection area was about 500 μSv during summer long shutdown maintenance.
- → As long as we use the foil for injection, we can't completely avoid this loss! (However, we have to use it for charge exchange injection at present.)

We tried to mitigate it...

High activation around the injection point(Cont'd)

How to mitigate the effect of the foil loss?

- Large painting area
- Smaller foil

>Additional local shielding

The foil loss would be a key issue to realize multi-MW beam at the proton synchrotron.

Trial beyond 1-MW

Original 1 MW acceleration scheme

- ✓ 1 GeV acceleration achieved on Dec.
 2018
- ✓ 1 GeV acceleration achieved on Oct. 2018
- ✓ 0.8 GeV acceleration achieved on Dec.
 2019

Trial beyond 1 MW (Cont'd)

Courtesy of H. Hotchi

Beyond 1 MW

Operation

- RCS is almost continuing stable user operation.
 - At present, 6.2e13 ppp (750-kW) beam delivers to the MLF and 6.7e13 ppp (515-kW in MR) beam to the MR.
 - So far, the neutron target limits the operation beam power. We will increase the beam power with carefully monitoring the target status and the beam loss.

High power study

- We tried 1-MW, 2-day continuous operation, but it revealed some issues to achieve stable user operation with 1-MW.
- From our experiences, design of the injection is quite important to realize multi-MW beam.
- Trials beyond 1-MW were carried out. Results indicated RCS has enough capability to accelerate 1.5-MW beam if RF system would be reinforced.