SEPROLER SOFT SCIPPARTMENT OF SCIENCE OF SCience

PIP-II: overview, status and challenges

Arkadiy Klebaner 1st Muon Community Meeting 20 May 2021

A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

Outline

- Project Status
- **F** Technical Designs overview
- Challenges
- **Summary**

International Neutrino Program → PIP-II / LBNF / DUNE

- Powerful proton beams (**PIP-II**)
	- 1.2 MW upgradable to multi-MW in energy range of 60-120 GeV to enable world's most intense neutrino beam
- Dual-site detector facilities (**LBNF**)
	- Deep underground caverns (1.5 km) to support 4 x 17 kt liquid argon volume detectors
	- A long baseline (1300 km) neutrino beam, with wideband capability
- Deep Underground Neutrino Experiment (**DUNE**)
	- The next-generation neutrino experiment

PIP-II….a new SRF accelerator to generate neutrinos

20-May-2021 Arkadiy Klebaner | 1st Muon Community Meeting | PIP-II

PIP-II Mission

PIP-II will enable the world's most intense beam of neutrinos to the international LBNF/DUNE project, and a broad physics research program, powering new discoveries for decades to come.

PIP-II will provide:

Beam Power

Meeting the needs for the start of DUNE (1.2 MW proton beam);

 \triangleright Upgradeable to multi-MW capability;

Flexibility

Compatible with CW-operations which greatly increases the Linac's output;

Customized beams for specific science needs;

 \triangleright High-power beam to multiple users simultaneously;

Reliability

 \triangleright Fully modernizing the front-end of the Fermilab accelerator complex.

PIP-II Scope

- An 800-MeV superconducting H- Linac
- Beam transport of 800-MeV H⁻ from the SRF Linac to the Booster
	- A new injection area in the Booster
- Modifications to the Booster, Main Injector, and Recycler Ring to enable >1MW power on LBNF target for 60-120 GeV
- Associated conventional facilities. The linac enclosure is compatible with upgrades.
	- Site preparation
	- Cryoplant Building
	- **Linac Complex**
	- Booster Connection

PIP-II baseline approved – 14 December 2020 PIP-II long-lead procurement approved – 16 March 2021

Booster Main Injector PIP-II *SRF Linac Transfer Line*

PIP-II International Partners, Expertise and Capabilities

India, Department of Atomic Energy (DAE) (started 2009) BARC, RRCAT, VECC; also IUAC

Substantial engineering / manufacturing experience; Superconducting magnets for LHC; 2 GeV synch light source

Italy, INFN (started 2016)

Internationally recognized leader in superconducting RF technologies SRF cavity and cryomodule fabrication for XFEL; SRF cavities for ESS

UK, STFC UKRI (started 2017)

Substantial engineering and manufacturing experience; Construction, operation of synch light & neutron sources SRF cavity processing and testing for ESS

France, CEA, CNRS/IN2P3 (started 2017)

Internationally recognized leader in large-scale CM assembly CM assembly for European XFEL and ESS; SSR2 cavities and couplers for ESS

Poland, WUST, WUT, TUL (started 2018)

Substantial engineering / manufacturing experience; CDS, LLRF, QC for XFEL, ESS

PIP-II is the U.S. first accelerator project to be built with major international *contributions; benefits from world-leading expertise, capabilities.*

Technical Designs

NZ PIP-II Linac $\mathbb{Z} \mathbb{N}$ $\overline{\odot}$ **Elliptical** $\overline{\odot}$ HB650 X 4 **Elliptical Cryoplant** 24 Cavities \bigodot $\overline{\odot}$ LB650 X 9 650 MHz **Single Spoke** 36 Cavities **Single Spoke** SSR2 X 7 650 MHz J. J. J. Miles SSR1 X 2 35 Cavities 16 Cavities 325 MHz **CDS HWR** 325 MHz 8 Cavities 162.5 MHz 833 MeV 516 MeV **H- Ion source** 177 MeV
Superconducting **RFQ** 32 MeV 10 MeV 2mA, 800 (833) MeV 2.1 MeV
Room Temperature Five Types of Cryomodules

Warm Front End

- 15 mA, 30 kV ion source
- 2 m LEBT ('slow' chopper, diff. pumping, envelope match to RFQ)
- 2.1 MeV, 162.5 MHz RFQ, 5mA
- 14 m MEBT (bunch-by-bunch chopper, shielding wall, envelope match)
- Successful integration of magnets from DAE/BARC.

Bunch-by-bunch chopper removes undesired bunches leaving beam current at up to 2 mA.

PIP-II Warm Front End and Critical Systems were tested at PIP2IT

- \checkmark lon source
- \checkmark RFQ, 2.1 MeV
- Chopper/Absorber to produce bunch pattern for injection into Booster
- \checkmark Beam dynamics agrees with design
- \checkmark Cryomodule/Cavity test
- \checkmark LLRF and resonance control test
- \checkmark Instrumentation
- \checkmark EPICs early development

13 20-May-2021

MEBT Meets Design Performance Requirements

Demonstrated transporting 'LBNF beam' through PIP2IT MEBT for 24 hours,

meeting design performance requirements: 5 mA ×0.55 ms×20 Hz×2.1 MeV

PIP2IT beam current measured by DCCT in LEBT and dump at the end of MEBT

Bunch-by-bunch chopper offers arbitrary bunch pattern capability

- Kickers were successfully operated
- Kickers do not significantly deteriorate transverse beam emittance
- Down-selected 200-Ohm kicker as baseline

MEBT Chopper Is Fully Operational

- Chopper generates LBNF bunch pattern for injection into Booster
- Chopped beam transported to HEBT Dump. Tuning with beam is ongoing.

Chopped beam in HEBT at the end of PIP2IT

Arkadiy Klebaner | 1st Muon Community Meeting | PIP-II

Superconducting Section

The state-of-the-art PIP-II Superconducting RF Systems

SSR1 – Indian Cavity Performance

20 20-May-2021 **Arkadiy Klebaner | 1st Muon Community Meeting | PIP-II *STC= Spoke Test Cryostat**

DAE Solid-State Amplifiers

ECIL/BARC 7 kW 325 MHz amplifiers powering SSR1 cavities at PIP2IT

RRCAT 40 kW 650 MHz prototype being assembled, in preparation for testing mm

PIP-II Cryomodules Accelerate Beam to 17 MeV!

- Measured beam energy closely matches predicted
- Demonstrated LBNF/Booster beam pattern
- Validated RF/LLRF with long pulses, instrumentation and MPS

22 20-May-2021 *Significant Milestone: SRF cryomodules and battery of accelerator systems demonstrate solid performance; design requirements are being validated; international partners' deliverables seamlessly integrated. New era of SRF proton acceleration at Fermilab*

SSR2 Cavities, Pre-Production Cryomodule

Cavity

- Integrated design team: Fermilab, IN2P3 and DAE
- Niobium production at vendor completed
- Prototype jacketed cavity procurement in progress
- Coupler procurement in progress

Cryomodule

Design in progress by Fermilab, DAE

LB650 Cavities

- Q_0 , Gradient \rightarrow 2.4 x10¹⁰ and 16.8 MV/m state-of-the-art for β <1
- Cavity RF design completed led by INFN
- MSU 644 MHz cavities tested, meet PIP-II Q_0 , gradient specs

INFN cavity B61 on ANL EP stand MSU cavities are directly scaled from PIP-II LB650 cavity design. Courtesy: *Martina Martinello*

HB650 Prototype Cryomodule

Cavity

- Q_0 , Gradient \rightarrow 3.3 x10¹⁰ and 18.7 MV/m state-of-the-art for β <1
- Four HB650 Fermilab cavities exceeded cryomodule Q_0 spec
- RRCAT cavity reached max gradient 29 MV/m, met PIP-II specs
- Cavity, coupler procurement awarded

Cryomodule

- FDR was successfully completed in 7/29-31/2020
- Successful HB650 Transportation FDR on 9/22/2020 led by UKRI

Bare HB650 Cavity

Arkadiy Klebaner | 1st Muon Community Meeting | PIP-II

PIP-II: Booster Transferline

Presently, Losses in Booster Limit Accelerator Complex Performance

PIP-II Mitigates Intensity Limits and Losses in Booster

- **Increased injection energy and painting** reduce space charge tune shift by a factor of 2.5 comparatively to present Booster (equivalent to intensity 1.8x10¹²)
- **Improved single-unit, two-stage collimation** will reduce uncontrolled losses by a factor of \sim 2
- **Damper Upgrades** will reduce losses associated with transverse and longitudinal instabilities
- **New extraction magnets** with increased aperture will reduce losses at extraction
- **Direct bucket injection and the higher injection energy** (smaller slip factor) eliminate longitudinal losses associated with adiabatic capture and LLRF/RF noise

Booster Injection

• **Injection parameters**

- Injection energy increased from 400 MeV to 800 MeV
- Injection beam intensity increased by 50%.
- Booster rep rate increased from 15 Hz to 20 Hz
- Injection time increased by a factor of 18
- The length of the injection straight remained the same

• **New injection Girder**

- New ORBUMP magnets and PS
- Injection absorber
- New injection foil

• **Booster gradient magnets**

– New shorter magnets on each side of the girder

PIP-II Scope Includes Accelerator Upgrades Required to Achieve 1.2 MW

- **Booster**
	- New 800 MeV Booster Injection Area with ancillary systems
	- Booster modifications for 20 Hz operations
	- New booster cavities, higher voltage, larger aperture to provide higher voltage (1.16 MV) required for 20 Hz and higher intensity
	- Collimators, Dampers to control losses in Booster
	- Larger bore magnets to reduce losses at extraction
	- Advanced Booster Intensity Physics Studies
- Recycler Ring
	- New Recycler cavities to support continuous operation mode
- Main Injector
	- Gamma_t jump to reduce losses at transition to address higher intensity and larger longitudinal beam emittance
	- New RF amplifiers to provide additional RF power to enable acceleration of PIP-II beam

MI Cavity with two PAs

Some Challenges …

- Reliable, reproducible, and efficient beam tuning
	- *High sensitivity of beam dynamics to beam parameters and hardware performance in the low energy part (<30 MeV)*
	- *Changes in cavity performance require rephasing many cavities while precisely maintaining the linac energy*
	- *Requires accurate knowledge of the machine optics and comprehensive instrumentation*
- Control of beam quality and beam losses, for high power/CW operations – *Losses must be controlled down to ~1E-6/m* level
- Achieving and maintaining SRF cavities High Q0 and High Gradient
	- *Nitrogen doping & fast cool down are required*

More Challenges …

- Production of cryomodules reliably meeting performance requirements
	- *Supply chain management and quality control*
- Suppression of Microphonics noise
	- *Maximum detuning < 20 Hz (sigma < 3 Hz)*
		- *Passive means (Cryomodule design)*
		- *Active means(Adaptive Detuning Control Algorithm)*
- Rapid evolution of electronics
	- *Standardization of controls, electronics, etc.*

Even More Challenges …

- High efficiency of RF systems
	- *Reduction of power consumption*
	- *Improving power efficiency with a low Duty Factor beam through pulsed operations*
- Integration with existing Accelerator Complex
	- *Many critical booster components and infrastructure are aged*
- Operation of Booster with higher intensity
	- *50% higher intensity*
- Systems Integration

• …

Summary

- PIP-II is a leading-edge SRF linear accelerator critical to the success of the LBNF/DUNE international neutrino program
- International partnerships are essential for the success of PIP-II
- Excellent, experienced project team and strongly committed partners ensure continued technical progress despite pandemic challenges
- Challenges… we have some…

Thank you!