

Overview of Magnet Needs for Pulsed Synchrotrons

J. Scott Berg Brookhaven National Laboratory 1st Muon Community Meeting 20 May 2021

- Acceleration overview
- Pulsed synchrotrons, including hybrid
- Sample parameters
- Pulsed magnets
- Final thoughts, R&D list

- Limit decays: muons are difficult and expensive to create
- Everything happens fast
 - At lower energies have no time to change magnet fields, RF frequencies, replace RF energy
 - These become possible at high energy, but parameters beyond conventional
- RF cavities are expensive: make as many passes through cavities as possible
- RF power is expensive: consider energy efficiency
- Avoid increasing transverse and longitudinal emittance

- Muons decay, rest lifetime 2.2 µs
- Large average acceleration gradient (energy gain divided by beam line length) to avoid decays
- Determine average accelerating gradient from desired transmission for a given energy ratio

$$\frac{m_{\mu}c^2/e\log[(E_{\rm f}+cp_{\rm f})/(E_{\rm i}+cp_{\rm i})]}{c\tau_{\mu}} \frac{\log(N_{\rm f}/N_{\rm i})}{\log(N_{\rm f}/N_{\rm i})}$$

Formula involves transmission fraction and energy ratio. Doesn't get relaxed at higher energies.
To get MAP luminosities, we needed 3.5 MV/m

- RF and machine length drive costs
- Muons are bendable leptons: multiple (few to low 10s) RF passes

$$n \sim \frac{\Delta E}{eG_{\text{avg}}L} \sim \frac{1}{2\pi} \frac{B_{\text{avg}}c}{G_{\text{avg}}} \frac{\Delta E}{pc}$$

- Small circumference of acceleration stages
- High fields in dipoles
- Large dipole packing fraction

- Accelerate as usual for a synchrotron: magnet fields proportional to momentum
- Distribute cavities uniformly around ring, as many stations as possible to minimize mismatch
 - Energy increases discretely
 - Field varies continuously
- Maximum field only around 1.5 T: few turns or large number of decays
- Magnet fields increasing rapidly (1 ms and below)

- Increase average bend field: interleave fixed superconducting dipoles and bipolar pulsed warm dipoles
 - More RF passes and shorter circumference
- Larger energy gain factor has significant penalties
 - Lower average bend field, so longer ring
 - Wider aperture required in magnets
 - Energy discretization problems at lower energies
- Easier at higher energies: more time
- Adjust orbit position to keep time of flight constant

Hybrid Pulsed Synchrotron

J. S. Berg — Magnet Needs for Pulsed Synchrotrons

- Large longitudinal emittance: 25 meV s
- Small transverse normalized emittance: $25 \,\mu m$
- High bunch charge: 2×10^{12} per sign
- Low repetition rate: 15 Hz
- Average gradient: 3.5 MV/m
 1.3 GHz cavities at 35 MV/m
- Pulsed dipole maximum field: 1.5 T
- Fixed dipole field: 10 T

- Accelerate from 63 to 1500 GeV
- Three stages, first two share a tunnel
- Very hand-waving calculation
- Dwell times in particular will be somewhat longer

Injection Energy (GeV)	63	303	750
Extraction Energy (GeV)	303	750	1500
Circumference (m)	5210	5210	9361
Fixed Dipole Length (m)		1103	2358
Ramped Dipole Length (m)	4229	3126	5240
Turns	13	25	23
Time (ms)	0.23	0.43	0.72

- Acceleration times 1 ms and below
- Need to deal with energy losses
 - Combine high-field pole with 6.5% Si steel back yoke
 - HTS-based SC solutions
- Power supply
 - Need good control of current ramp
 - Large peak power
 - High efficiency (below 2% loss per pulse) to keep losses below magnet losses
 - Keep magnet apertures small to minimize stored energy
- Losses and power supply capabilities lead to lowest tolerable energy for pulsed synchrotrons

Pulsed Magnet Design

- 3% Si pole (moderate loss, high field)
- 6.5% Si back yoke (low loss)
- Losses dominated by pole
- Low eddy current loss in coil

- Stored energy in pulsed magnets of a few to low 10s of MJ per ring
- Peak power delivered in the GW range per ring (individual supply per magnet?)
- Must store energy between pulses with decent efficiency
- Ramp should be linear and well-controlled. Difficult to control acceleration rate (rapid phase change, bucket area).
- Ramping either from something above zero to maximum, or from negative to positive

- High field, fixed field magnets for hybrid designs
- Things get easier, more efficient at higher energies
- Pulsed power supply is the biggest challenge
 - High ramp rate, power
 - Controlling the current pulse
- Can slow down, but more decays or money
- If pulsing too scary at low energies, we have other (probably more expensive) options: FFAs
- Higher field pulsed magnets would be nice
 - Different pole materials:
 - Pure iron: higher losses
 - Fe-Co: activation?

• Can SC options (HTS) ramp in these sorts of times?

- Power supplies
 - Short pulse times
 - Efficiency
 - Tightly controlled linear ramp
- Higher field pulsed magnets
 - Higher fields in conventional design
 - Rapid pulsing of HTS magnets?
- High field fixed magnets