

Science and Technology **Facilities Council**

Collider arc with skew Q and vFFA

Shinji Machida UKRI/STFC Rutherford Appleton Laboratory

21 May 2021 **1st Muon Community Meeting**

Two exotic options not discussed in MAP

Collider arc with skew quadrupoles

Vertical excursion FFA for muon acceleration

Science and Technology Facilities Council

Two exotic options not discussed in MAP

Collider arc with skew quadrupoles

Vertical excursion FFA for muon acceleration

Science and Technology Facilities Council

Reasons of skew quadrupole collider arc

- Flexible momentum compaction factor Without exciting non-zero harmonic of the dispersion function

 - Without reverse bending
- Spreading out radiation due to neutrinos by wiggling (wobbling) orbit in vertical as well as in horizontal.
 - Angle of wiggling orbit is a function of optics, not by mechanical, i.e. easy to adjust different configurations.
- No design of the low-beta insertion yet, but it should be a simple 45 rotation of the conventional one to start.

Excite periodicity of the dispersion close to tune **J-PARC** synchrotron

$$\alpha_1 = \frac{1}{L} \int_0^L \frac{D_x}{\rho} ds = \frac{Q_x}{L} \int_0^{2\pi} \frac{\beta_x D_x}{\rho} d\phi$$
$$D_x(s) = \beta_x^{1/2}(s) Q_x^2 \sum_k \frac{a_k e^{jk\phi}}{Q_x^2 - k^2}$$
$$a_k = \frac{1}{2\pi} \int_0^{2\pi} \frac{\beta_x^{3/2}}{\rho} e^{-jk\phi} d\phi$$

$$\alpha_1 = \frac{2\pi Q_x^3}{L} \sum_k \frac{|a_k^2|}{Q_x^2 - k^2}$$
$$\sim \frac{1}{Q_x^2} \qquad |a_0^2| = \frac{L}{2\pi Q_x^3}$$

Science and Technology Facilities Council

Momentum compaction factor is dominated by non-zero harmonics of the dispersion.

Figure 1: Beam optics functions of the module in arc section of the JHF 50 GeV main ring. $\beta_x^{1/2}$:solid line, $\beta_y^{1/2}$:dashed line.

Radial shift of normal quadrupole FODO non-scaling FFA

- Dispersion function Dx can be small in ns-FFA lattice configuration.
- **Dispersion action function H** is minimum in ns-FFA so that momentum compaction factor is zero.

Normal quadrupole

"EMMA comm.", Nature Physics Vol. 8, No. 3 (2012).

Non scaling FFA (small alpha)

Top view

Vertical shift of skew quadrupole FODO no reverse bending

- Vertical bending field changes its sign below or above the mid-plane.
- We can eliminate reverse bend.

Facilities Council

Skew quadrupole

Combined function (small alpha)

Top view

and the second second	
Annual	
~	\mathbf{N}
	11/
Same Same	Carl man
1711111	Contraction of the second
$/ \bigcirc$	111
1	11
	1
} /	

MADX results normal Q vs skew Q

1.5 TeV collider ring *momentum comp=0, arc only*

Normal FODO		
1.5 TeV		
0		
6080 m		
16 m		
2 x 6.4 m		
380		
20 T		
240 T/m		
0.3131 / 0.3131		

Science and Technology Facilities Council

25 20 15 10 5 0 -5 -10 -15 -20 -25

[**T**]

Щ

8

4

0

-4

-8

0

[m]

×

1.5 TeV collider ring *momentum comp=0, arc only*

8

4

0

-4

-8

15

10

5

0

-5

-10

-15

0

[m]

X

		-
	Skew FODO	
Energy	1.5 TeV	_
Momentum compaction	0	
Circumference	6080 m	
Cell length	16 m	
Magnet length	2 x 6.4 m	
# of cell	380	
Maximum field	14 T	
Field gradient	240 T/m	
Cell tune	0.3131 / 0.3131	

Science and Technology Facilities Council

1.5 TeV collider ring

Radiation mitigation orbit is wiggling in vertical direction by horizontal dipole

- Beam orbit is not constrained on a horizontal plane.
- Vertical wiggling angle is e.g. +/- 8 mrad (see below, but depend on cell length).

Science and Technology Facilities Council

Planar ring

Non-planar ring

Correction of higher order MC and chromaticity with skew sextupole

Skew sextupole control higher order momentum compaction factor and chromaticity at the same time.

13

Superconducting coil

Normal quad

Skew quad

Does the gap in horizontal plane (open mid-plane) help?

R&D proposal

Full collider arc optics design with combined skew quadrupole magnets

- Control of the momentum compaction factor and mitigation of radiation due to neutrino decaying from muons can be achieved by a lattice whose main elements are skew quadrupoles with vertical displacement.
- It is a promising novel design concept, but needs more investigation on the effects of nonlinear components, tuneability of the orbit and optics.
- Low beta section is not designed which to be compatible with the arc. Simple 45 rotated low beta is a good start.
- R&D aims for the completion of conceptual design in 2025.

Two exotic options not discussed in MAP

Collider arc with skew quadrupoles

Vertical excursion FFA for muon acceleration

Science and Technology Facilities Council

Reasons for vertical excursion FFA (vFFA)

- **DC magnet**: no need to ramp according to the beam momentum.
- Isochronous operation: no need to modulate RF frequency according to the beam momentum.
- The beam orbit moves up when the beams are accelerated.

Example: 1.5 TeV accelerator in similar size of LHC tunnel

	FODO	FDF	· · · · · ·
Energy	50 GeV to 1.5 TeV	50 GeV to 1.5 TeV	₁₀ To
Cell length	35 m	52.5 m	× Bd
Magnet length	2 x 15 m	3 x 15 m	0 10
# of cell	810	540	1
Maximum field	8.7 T	10.6 T	
Field index m	6.8	3.0	[H
Orbit excursion	0.50 m	1.13 m	<u></u> —
Cell tune	0.3957 / 0.0861	0.3510 / 0.1515	_1

Science and Technology Facilities Council

Reduction of reverse bending is one of optimisation targets.

Critical issues (1) orbit excursion makes a large aperture

• DC but large aperture (in vertical only) magnet.

3D magnetic field increase exponentially.

$$B_x (x, y, z) = B_0 \exp(my) \sum_{i=0}^N b_{xi} (z) z$$
$$B_y (x, y, z) = B_0 \exp(my) \sum_{i=0}^N b_{yi} (z) z$$
$$B_z (x, y, z) = B_0 \exp(my) \sum_{i=0}^N b_{zi} (z) z$$

 $m = (1/B) \left(\frac{\partial B}{\partial y} \right)$

35

17.5 long [m]

where

$$b_{x0}(z) = 0, \qquad b_{x,i+1}(z) = -\frac{1}{i+1} \left(mb_{yi} + \frac{db}{dt} + \frac{db}{dt} \right), \\ b_{y0}(z) = g(z), \qquad b_{y,i+2}(z) = \frac{m}{i+2} b_{x,i+1}, \\ b_{z0}(z) = \frac{1}{m} \frac{dg}{dz}, \qquad b_{z,i+2}(z) = \frac{1}{i+2} \frac{db_{x,i+1}}{dz}.$$

Critical issues (2) reverse bend

- increases the overall circumference of the ring.
- The present lattice design has large fraction of reverse bending field which Reduction of reverse bend is the high priority item of vFFA optics.

• e.g. vFFA without reverse bend magnets (replaced by edge focusing).

STEPHEN BROOKS

Phys. Rev. ST Accel. Beams 16, 084001 (2013)

Science and Technology Facilities Council FIG. 8.

Perspective view of the 12 GeV ring.

Critical issues (3) orbit excursion at RF cavity

- High frequency RF (1.3 GHz) does not have a wide enough aperture (~ 0.5 m) to accommodate orbit excursion of high and low momentum beams.
- Conventional FFA has a way to reduce the dispersion function locally, which makes the orbit excursion small or zero locally.
- The same technique is under investigation in vFFA.

R&D proposal

Optimisation of vFFA accelerator lattice

- for muon acceleration.
- Relatively large circumference and orbit excursion of the order of ~ meter are two main issues of the vFFA based muon accelerator.
- Reverse bend could be reduced or eliminated, for example, by edge focusing. Dispersion suppressor could be considered which was successful designed in a conventional horizontal excursion FFA.
- R&D aims for the completion of conceptual design in 2025.

DC magnet and isochronous operation are the main reasons to consider a vFFA

Thank you for your attention

Science and Technology Facilities Council

Summary

	Normal FODO		Skew FODO	
Energy	1.5 TeV	1.5 TeV	1.5 TeV	1.5 TeV
Momentum compaction	4.32 x 10-4 —	→ 0	4.32 x 10-4 —	→ 0
Circumference	2880 m 🗕	→ 6080 m	2880 m —	→ 6080 m
Cell length	16 m	16 m	16 m	16 m
Magnet length	2 x 6.4 m			
# of cell	180	380	180	380
Maximum field	14 T 🗕	→ 20 T	14 T 🗕	➡ 14 T
Field gradient	240 T/m	240 T/m	240 T/m	240 T/m
Cell tune	0.3119 / 0.3119	0.3131 / 0.3131	0.3119 / 0.3119	0.3131 / 0.3131

Science and Technology Facilities Council Low beta insertion will be with skew quadrupoles even with up and down straight section.

