DL for change point detection

Artem Ryzhikov¹

¹HSE University

Motivation

Motivation

How to apply deep learning for change point detection (CPD)?

KLCPD

Problem statement

Let $\mathbb P$ - distribution of normal time stamps, $\mathbb Q$ - distribution of change points. Given kernel k, the Maximum Mean Discrepancy (MMD) distance looks following:

$$M_k(\mathbb{P}, \mathbb{Q}) = ||\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}||_{\mathcal{H}_k}^2 = \mathbb{E}_{\mathbb{P}} k(x, x') - 2\mathbb{E}_{\mathbb{P}, \mathbb{Q}} k(x, y) + \mathbb{E}_{\mathbb{Q}} k(y, y')$$

Advantages of MMD w.t. KL:

- no need in pdf
- ▶ can be empirically estimated: $\hat{M}_k(X, Y) = \frac{1}{C_m^2} \sum_{i \neq j} k(x_i, x_j) \frac{2}{m^2} \sum_{i,j} k(x_i, y_j) + \frac{1}{C_m^2} \sum_{i \neq j} k(y_i, y_j)$
- can be used to test null hypothesis $\mathbb{P} = \mathbb{Q}$: $\frac{\hat{M}_k(X,Y) M_k(\mathbb{P},\mathbb{Q})}{\sqrt{V_m(\mathbb{P},\mathbb{Q})}} \xrightarrow{D} \mathcal{N}(0,1)$. The test power is then $P(m\hat{M}_k(X,Y) > c_{\alpha}) \to \Phi(\frac{M_k(\mathbb{P},\mathbb{Q})}{\sqrt{V_m(\mathbb{P},\mathbb{Q})}} - \frac{c_{\alpha}}{m\sqrt{V_m(\mathbb{P},\mathbb{Q})}})$, where Φ is CDF of $\mathcal{N}(0,1)$

KLCPD. Idea 1

$$P(m\hat{M}_k(X, Y) > c_{\alpha}) \to \Phi(\frac{M_k(\mathbb{P}, \mathbb{Q})}{\sqrt{V_m(\mathbb{P}, \mathbb{Q})}} - \frac{c_{\alpha}}{m\sqrt{V_m(\mathbb{P}, \mathbb{Q})}})$$

Idea: use $\hat{M}_k(X, Y)$ as score

Problem: too small samples in $Y \sim \mathbb{Q}$

KLCPD. Idea 2

Problem: too small samples in \mathbb{Q}

Solution: use generative model \mathbb{G} for change points (anomalies)

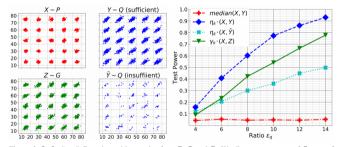


Figure 2: Left: 5×5 Gaussian grid, samples from \mathbb{P}, \mathbb{Q} and \mathbb{G} . We discuss two cases of \mathbb{Q} , one of sufficient samples, the other of insufficient samples. Right: Test power of kernel selection versus ϵ_q . Choosing kernels by $\gamma_{k^-}(X,Z)$ using a surrogate distribution \mathbb{G} is advantageous when we do not have sufficient samples from \mathbb{Q} , which is typically the case in time series CPD task.

Upper estimated for surrogate model \mathbb{G}

We will try to fit \mathbb{G} s.t.

$$M_k(\mathbb{P}, \mathbb{P}) < M_k(\mathbb{P}, \mathbb{G}) < M_k(\mathbb{P}, \mathbb{Q}), \forall k \in \mathcal{K}$$

It leads to stronger test power:

$$\max_{k \in \mathcal{K}} \frac{M_k(\mathbb{P}, \mathbb{Q})}{\sqrt{V_m(\mathbb{P}, \mathbb{Q})}} - \frac{c_\alpha/m}{\sqrt{V_m(\mathbb{P}, \mathbb{Q})}} \geq \max_{k \in \mathcal{K}} \frac{M_k(\mathbb{P}, \mathbb{Q})}{\sqrt{v_u/m}} - \frac{c_\alpha}{\sqrt{mv_l}} \geq \max_{k \in \mathcal{K}} \frac{M_k(\mathbb{P}, \mathbb{G})}{\sqrt{v_u/m}} - \frac{c_\alpha}{\sqrt{mv_l}} = \gamma_{k*}(\mathbb{P}, \mathbb{G})$$

Kernel and final algorithm

Kernel:

$$K(x, x') = exp(-||f_{\phi}(x) - f_{\phi}(x')||^{2})$$

Final loss:

$$\min_{\theta} \max_{\phi} \quad M_{f_{\phi}} \left(\mathbb{P}, \mathbb{G}_{\theta} \right) - \lambda \cdot \hat{M}_{f_{\phi}} \big(X, X' \big) - \beta \cdot \mathbb{E}_{\nu \in \mathbb{P} \cup \mathbb{G}_{\theta}} \| \nu - F_{\psi} \big(f_{\phi}(\nu) \big) \|_{2}^{2}$$

Implementation

Unofficial PyTorch implementation of KL-CPD

License BSD 3-Clause

KL-CPD is an algorithm for change point and anomaly detection in time series.

More information can be found in the 2019 paper Kernel Change-point Detection with Auxiliary Deep Generative Models.

Usage

```
from klcpd import KL_CPD

dim, seq_length = 1, 100

ts = np.random.randn(seq_length, dim)
device = torch.device('cuda')
model = KL_CPD(dim).to(device)
model.fit(ts)
preds = model.predict(ts)
print(preds)
```

Installation

pip install git+https://github.com/HolyBayes/klcpd

TIRE

TIRE

Idea: use autoencoders latent representations to detect abnormal change points

Tricks

Pre processing

- \blacktriangleright train AE on time slices of size N
- use both FFT and original timeseries

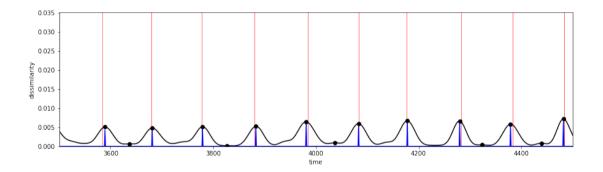
Inference

- ▶ split AE latent code z on time-invariant (s_t) and instantaneous (u_t) parts
- minimize $(||y_t \tilde{y}_t||^2 + \frac{\lambda}{K} \sum_{k=0}^K ||s_{t-K} s_{t-K-1}||^2)$

Post processing

- use moving average smoothing \tilde{s}_t of latent codes s_t
- use $D_t = ||\tilde{s}_t \tilde{s}_{t+N}||^2$ as change point score
- exclude local peaks by $\hat{D}_t = D_t \max\{\min_{t_L < t^* < t} D_{t^*}, \min_{t_R > t^* > t} D_{t^*}\}$

Example



Implementation

PyTorch implementation of TIRE (UNOFFICIAL)

License BSD 3-Clause

TIRE is an autoencoder-based change point detection algorithm for time series data that uses a Time-Invariant Representation (TIRE). More information can be found in the 2020 preprint Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation.

Usage

```
from TIRE import DenseTIRE as TIRE
import torch
import nummy as np

seq_length = 4500
dim = 1
ts = np.random.rando(seq_length, dim)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TIRE(dim).to(device)
model.fit(ts, epoches=1)
dissimilarities, change_point_scores = model.predict(ts)
# plt.plot(dissimilarities)
```

Results

Results

TABLE II

COMPARISON OF THE AUC OF THE PROPOSED TIME-INVARIANT REPRESENTATION CPD METHODS (TIRE) WITH BASELINE METHODS.

	Mean	Variance	Coefficient	Gaussian	Bee dance	HASC-2011	Well log	Average
GLR [14], [15]	0.73 ± 0.02	0.81 ± 0.02	1.00 ± 0.01	0.989 ± 0.004	0.55 ± 0.06	0.6431	0.2109	0.71 ± 0.01
RuLSIF [22]	0.708 ± 0.008	0.65 ± 0.02	0.36 ± 0.02	0.874 ± 0.007	0.47 ± 0.06	0.3162	0.798	0.597 ± 0.009
KL-CPD [20]	0.872 ± 0.007	0.23 ± 0.02	0.11 ± 0.01	0.84 ± 0.07	0.56 ± 0.07	0.343	0.4247	0.48 ± 0.01
ABD [27]	0.22 ± 0.02	0.17 ± 0.02	0.08 ± 0.02	0.18 ± 0.02	0.20 ± 0.04	0.2487	0.477	0.224 ± 0.008
TIRE-TD-a	0.86 ± 0.01	0.25 ± 0.01	0.26 ± 0.01	0.958 ± 0.009	0.36 ± 0.05	0.4166	0.8002	0.558 ± 0.007
TIRE-FD-a	0.86 ± 0.01	0.85 ± 0.01	0.96 ± 0.01	0.83 ± 0.04	0.70 ± 0.10	0.6504	0.6278	0.78 ± 0.02
TIRE-a	0.86 ± 0.01	0.85 ± 0.01	0.74 ± 0.05	0.92 ± 0.02	0.65 ± 0.09	0.6172	0.7656	0.77 ± 0.02
TIRE-TD-b	0.882 ± 0.009	0.26 ± 0.02	0.26 ± 0.02	0.965 ± 0.006	0.42 ± 0.06	0.4284	0.8151	0.58 ± 0.01
TIRE-FD-b	0.86 ± 0.01	0.84 ± 0.02	0.95 ± 0.02	0.74 ± 0.03	0.69 ± 0.10	0.6261	0.200	0.70 ± 0.02
TIRE-b	0.877 ± 0.009	0.83 ± 0.02	0.76 ± 0.05	0.89 ± 0.02	0.60 ± 0.09	0.6258	0.8134	0.77 ± 0.01

Results of "Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation" paper

Bibliography

Links

- ▶ KLCPD Chang, Wei-Cheng et.al., Kernel Change-point Detection with Auxiliary Deep Generative Models, ICLR 2019
- ► KLCPD implementation Artem Ryzhikov, https://github.com/HolyBayes/klcpd
- ► TIRE Tim, De Ryck et.al., Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation
- ► TIRE implementation Artem Ryzhikov, https://github.com/HolyBayes/TIRE_pytorch

Thank you for your attention!

Artem Ryzhikov aryzhikov@hse.ru